
AD-A245 272

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTICA& -TECTE .

0JAN 29 1992D

THESIS

TIMLE DOMAIN MODAL BE.kMFOR'.ING
FOR A NEAR VERTICAL ACOUSTIC ARRAY

by

Steven Edward Crocker

December, 1991

Thesis Advisor: James H. Miller

Approved for public release; distribution is unlimited.

92-02260,, 111111 I I(I II ill IN II

UNCLASSIFIED)
SEC;RTY CLASSF'CG-, ON C T. S PAGE

Form Approved
REPORT DOCUMENTATION PAGE OM.Se~o 0704-0188

la REPORT SECURt'r CLASSF CA~iON I0 REST~iCTVE MARKNGS

UNCLASSIFIED _______________________

2a SECURITY CLASS,F CA-ON AjTHOR:TY 3 DISTRIBUTION AVA LABLTY OF REPORT

?b DCLASIFIATIO DOVNGRDNGSCHEuLEApproved for public release;2b DCLASIFIATIO, DONGR~iNGSCHEULEdistribution is unli-mited.

4 PERFORMiNG ORGANZA-ION REPOR- NuMBERIS) 5 MONITOR11'i3 ORGANIZATiON REPORT NuIVBER(S)

6a NAME OF PERFORMING ORGA.N1ZA7:ON 6b OFF.CE SYMBOL 7a NAME OF MON!TORiNG ORGAN ZA',ON
(if applicable)I

Naval Postgraduate School J EC Naval Postgraduate School

6c ADDRESS (City. State, and ZIP Code) 71D ADDRESS (City, State, and ZIP Code)

M1.onterey, CA 93943-5000 MIonterey, CA 93943-5000

8a NaVE O P,%D.NG SPOSOP %uj So OFF CE SYVBO)- 9 PROCLREMENT ;NSTRuMAEN- ,DENT.F1CA'jON %UMBER
ORGANZA7TON j(if applicable)

8c ADDRESS (City, State, and ZIP Code) 10 50-PCE OPr.%~DNG NuVREPS

;:-C' RAN' P RO.CT -As* AORK UNiT

IE EVENT NO 1 0NO ~ ACCESSION NO

I1 TiT.E (inclu~de Security Classification)

TIlIE DOMAIN M;ODAL BEAXI7OR2IING FOR A NEAR VERTICA.L ACOUSTIC ARRA-Y

'PEPSOA ATHOR,S
CROCKER, Steven F.

-~ROR1 CO,,E RE D LDA TE OF REPOR7 Year Month Day) is PAGE CLN
\Iaster' s T1hesis Ic O___199 eehr9
. SDCENEN.AP1 NO7A ON. Te1 vieWS expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the US
Government.
'7 COSAI (O>$; 18 SuBECT TERMS (Cont~nue on reverse if necessary and identify by block number)

P E' GPO, P 5:T zo-P

acoustic tomography; beamforming; odlbaforminc,

'9 zbS',5:CT ;Conrinue on revierse if necessary and identif'y by block number)

Ocean acoustic tomography permits the mappingi of various properties of a body of
water through indirect means. Thie technique utilizes travel time variations for an
acoustic sicnal to determine the structure of the ocean mnedium via inverse -mathematical
.methods. The scale of any tomnography experiment is fundamentally limited by the signal
to noise ratio at the receiver. Through the use of a near vertical acoustic array,
normal mode modelingo of the local environment and a modal bearmformer, array grains are
possible which greatly extend the maximnum separation between source and receiver.
Additionally, the technique provides temporal resolution of the nodal components of the
arriving signal.

A time domain modal beaniformer for a near vertical acoustic array has been
* developed. It has realized a nominal array gain of 6 dB for the Heard Island Experiment

vertical array deployed off California. The pri7ary obstacle to the technique remains
inadequate array gometry description.

DD Form 1473, JUN 86 Previous editions are obsolete SECiP T', CLASS r CA7ON O Ti- S PAGE

S,'N 0lC2-LF-01. -6603 UNCLASSIFIED

Approved for public release; distribution is unlimited.

Time Domain Modal Beamforming for a Near Vertical Acoustic Array

by

Steven E. Crocker

Lieutenant, United States Navy

B.S., University of Lowell , 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL

December 1991

Author:
SSteven E. Crocker

Approved by: _ _-__,-_ _""

q's H. Miller, Thesis Advisor

A A Atc I ,himan

Engineering Acoustics Acad ic Committee

ii

ABSTRACT

Ocean acoustic tomography permits the mapping of various properties of a body

of water through indirect means. The technique utilizes travel time variations for an

acoustic signal to determine the structure of the ocean medium via inverse mathematical

methods. The scale of any tomography experiment is fundamentally limited by the

signal to noise ratio at the receiver. Through the use of a near vertical acoustic array,

normal mode modeling of the k, al environment and a modal beamformer, array gains

are possible which greatly extend the maximum separation between source and receiver.

Additionally. the technique provides temporal resolution of the modal components of

the arriving signal.

A time domain modal beamformer for a near vertical acoustic ar~ay has been

developed. It has realized a nominal a-ray gain of 6 dB for the Heard Island

Experiment vertical array deployed off California. The primary obstacle to the

technique remains inadequate array geometry description.

' .T ,.i ..s'dLf,.ii: C'<-K,,.1 4

.... i
d1

-J

iii

m • • By

TABLE OF CONTENTS

I. INTRODUCTION.......................

A. THESIS SUMMARY...................1

B. THE HEARD ISLAND EXPERIMENT.............3

II. ACOUSTIC WAVE PROPAGATION THEORY............6

A. ACOUSTIC PROPAGATION IN AN OCEAN WAVEGUIDE . . 6

1. The Inhoinogeneous Wave Equation.........6

2. Solutions to the Inhoniogeneous Wave Equation 7

III. MODAL BEAMFORMING..................10

A. PRELIMINARY CONCEPTS................10

B. TIME DOMAIN BEAMFORMING..............10

C. THE MODAL BEAMFOR.MER...............12

IV. THE HEARD ISLAND VERTICAL ARRAY...........16

A. ARRAY CONSTRUCTION................16

B. INSTRUMENT DATA..................18

C. DATA ACQUISITION AND PREPROCESSING.........24

V. RESULTS AND CONCLUSIONS................26

A. HYDROPHONE DELAY AND WEIGHTING..........27

1. The Upper Sensor.................28

iv

2. The Lower Sensor 32

3. Steering Delays 34

4. Hydrophone Amplitude Weighting 36

B. ACOUSTIC PERFORMANCE 36

C. CONCLUSIONS 46

D. RECOMMENDATIONS 46

APPENDIX A 49

A. THE MODAL BEAMFORMER 49

1. Operational Considerations 49

2. Beamformer Source Code 52

B. DECOMMA.C 72

C. SACM1.C 73

D. SACM2.C 76

E. ARRAYTEST.C 79

REFERENCES 87

INITIAL DISTRIBUTION LIST 88

v

ACKNOWLEDGEMENTS

This work would not have been possible without the support

and encouragement of my family. It is they who deserve much

of the credit for my success. My parents, Lincoln and

Jacqueline Crocker, provided guidance when it was so

desperately needed. My father taught me that with imagination

and the will to succeed, nothing is impossible. I owe thanks

to the Gillans for seeing in me, qualities that I didn't know

existed. Most of all, I thank my wife Joyce and son Kevin for

their undying love and support. They provided motivation when

my own was lacking.

vi

I. INTRODUCTION

A. THESIS SUMMARY

The objective of this thesis is to develop a software

package to beamform acoustic signals used in ocean acoustic

tomography. The goal of tomography signal processing is the

precise measurement of acoustic travel time. Sound speed is

a well understood function of temperature, pressure and

salinity. Therefore, a fluctuation in acoustic travel time is

indicative of changes in the environment through which the

acoustic energy has passed. Once the travel time fluctuations

are known, inverse mathematical techniques can be used to

infer various properties of the ocean medium. [Ref. 1]

One source of travel time measurements is through the use

of explosive devices. Although such signals are easy to

generate, they may not provide the required precision owing to

dispersion of the various frequency components in the

impulsive signal. Additionally, such signals are difficult or

impossible to replicate. [Ref. 2]

A better method that has been employed in recent years is

the use of maximal-length sequences. The technique utilizes

a pseudorandom, binary sequence as the phase modulation for an

electronically generated bandpass signal. Maximal-length

sequences are well suited to travel time measurements by

virtue of their deterministic nature, autocorrelation

properties and simplicity.

The goal of the work described in the following pages is

to provide sufficient gain to permit the recovery and decoding

necessary for accurate travel time measurements for acoustic

paths of extreme length (in this case 10,000 nautical miles).

Specifically, the programming package should be able to:

" Exploit the spatial structure of the incident wave field
to discriminate among signals arriving from different
directions.

" Utilize information regarding time varying array tilt and
depth to estimate the array geometry.

" Provide a stable virtual array by using the array geometry
and modal structure of the immediate environment.

" Distinguish among the various modal components of the

target signal.

" Provide both time domain and frequency domain analysis.

" Remain sufficiently flexible so as to permit the
processing of arrays of differing construction in future
tomography experiments.

" Provide some measure of fault tolerance with respect to
the receiving array.

The remainder of this thesis is structured as follows:

" Chapter II. Acoustic Wave Propagation Theory

" Chapter III. Modal Beamforming

* Chapter IV. The Heard Island Array

" Chapter V. Results and Conclusions

2

Chapter II presents an introduction to acoustic wave

propagation. The approach taken is that of normal mode

propagation in a range independent channel.

The third chapter is an introduction to the concept of

modal beamforming. It reviews frequency domain and time

domain beamformers. The algorithm utilized in this study is

derived.

Chapter IV describes the construction and subsequent

deployment of the receiving array used in this experiment.

Data acquisition and preprocessing of the acoustic signal are

discussed.

The final chapter presents a description of the array

dynamics encountered and frequency domain output from the

software developed. Additionally, proposals for system

integration and performance improvements are detailed.

Appendix A contains the source code which has served as

the body of this work. In addition to the beamformer, various

utility programs are included which provide for array geometry

data reduction.

B. THE HEARD ISLAND EXPERIMENT

The performance of the software package is evaluated on a

raw data set (vice synthetic data). The data was acquired

during the Heard Island Experiment which occurred during the

period January 23 - February 2, 1991. The purpose of the

experiment was to determine the reliability of global acoustic

3

paths for tomographic analysis. Specifically, it is desired

to establish the viability of these transmission paths for a

proposed multi-national attempt to detect a decreasing trend

in acoustic travel time. Such a change would indicate an

overall warming along the path, providing the first convincing

evidence to the existence of global warming [Ref. 1].

The signals were transmitted from the vicinity of Heard

Island in the southern Indian Ocean. The site was selected

because it is central to a web of open water paths extending

through all the worlds oceans as shown in Figure 1.1.

Figure 1.1: Heard Island Raypaths

The transmitting ship was the R/V Cory Chouest. The

transmitter utilized a t~n element vertical array with a

maximum of five elements active at any time. A nominal source

level of 209 dB re i pPa at 1 meter was realized. Individual

projectors employed were HLF4LL very low frequency sources.

4

A variety of signal types were sent, including continuous

wave and maximal-length sequences. A carrier frequency of 57

Hz was chosen both for its low absorption losses and the

ability to distinguish it from the 50 and 60 Hz frequencies

generated by power plants world wide.

The Monterey component of the Heard Island Experiment

involved a collaboration between the Naval Postgraduate

School, the Monterey Bay Aquarium Research Institute, the

Massachusetts Institute of Technology, Woods Hole

Oceanographic Institution, SAIC and the Moss Landing Marine

Laboratory. The R/V Point Sur deployed a 32 element vertical

array approximately 70 nautical miles south-west of Monterey

Bay.

5

II. ACOUSTIC WAVE PROPAGATION THEORY

A. ACOUSTIC PROPAGATION IN AN OCEAN WAVEGUIDE

1. The Inhomogeneous Wave Equation

The homogeneous linear wave equation [Ref. 3),

VPp 18p (2.1)

S 2 at 2

incorporates two implicit assumptions. The first restricts

the sound speed to a constant value in the region of interest.

Following the development of Coppens [Ref. 4], if the sound

speed is now permitted to vary in space (but not time), then

c=c(x,y,z) may be substituted into the wave equation without

loss of generality.

The second implicit assumption restricts the use of

the wave equation to sound fields which are free of sources.

Before including a source term, the selection of a specific

coordinate system is appropriate.

Given that sound in the ocean does not spread

spherically in a free field, but radially with upper and lower

boundaries, implies the use of a cylindrical coordinate

system. To further simplify the problem to one sufficient for

this work, the sound field shall be assumed to exhibit redial

symmetry about the source, and sound speed variations shall be

restricted to depth, c(z). Based on these restrictions,

6

application of the Lapacian yields the homogeneous, range

independent wave equation,

1- p+ - (2.2)
r a a r) az2 c2 (z) at 2

The inclusion of a source term requires that the

inhomogeneous wave equation reduce to homogeneous form in

regions which are free of sources of acoustic energy. This

requirement implies that the delta function for a point source

located at r=O and z=z, have the form [Ref. 31

1 6(r)6(Z-Zo), (2.3)

2nr

where r is the spherical radius vector, r is the cylindrical

radial coordinate and z is the cylindrical depth coordinate.

Inclusion of this term in the wave equation yields the

Helmholtz equation for a monofrequency point source of unity

amplitude,

[i a j a +(j) 2]p 2 -8(r) b(z-z,) eih't.

(2.4)

2. Solutions to the Inhomogeneous Wave Equation

Having adopted a cylindrical coordinate system,

equation (2.4) can be solved by separation of variables.

Furthermore, the complete solution can be treated as a linear

7

combination of normal modes,

p(r, z, t) = ei'tE Rm(r) Zm(Z) (2.5)
m

The normal modes (Z.) form an orthonormal set of

eigenfunctions in z which satisfy the sourceless Helmholtz

equation,

d 2 +(2 _ Km2 Zm = 0 (2.6)

subject to the appropriate surface and bottom boundary

conditions, and the orthonormal condition,

fZn(z) Z,(z) dz = (2.7)

where Km is the eigenvalue for the mth eigenfunction (or normal

mode) and 6 nm is the Kronecker delta function.

A closed form expression for the Rm(r) may be obtained

by substitution of equation (2.6) into the inhomogeneous wave

equation (2.4), multiplication of all terms by Z,, integrating

over z and application of the normalization condition (2.7).

The result, after manipulation, is

1 d +_ 2d+R - 2(r) Zm(zo)(,
dr r

the inhomogeneous Bessel's equation. It has the known

solution

Rm(r) = -j7Zm(zo) Ho(21(Kmr), (2.9)

8

where H.(2)(Kmr) is the Hankel function of the second kind and

order zero. Substitution of this form into equation (2.5)

yields

p(r, z, t) = -in eJit EZm(z) Zm(Zo) HO(2) (K"r) (2.10)
m

Closed form solutions for the Zm(z) are either

difficult or impossible for all but select cases.

Fortunately, efficient numerical algorithms exist which

provide for the rapid solution of the depth dependent

functions. [Ref. 5]

9

III. MODAL BEAMFORMING

A. PRELIMINARY CONCEPTS

Propagating waves can be modeled as functions of both

space and time. Consequently, the attributes of such models

can be used to extract information from real wave fields.

Beamforming exploits the temporal and spatial characteristics

of a specified environment to enhance a particular aspect of

the wave field while attenuating undesirable components. Such

an operation can be loosely termed constructive reenforcement

of the desired signal or noise rejection. The information

exploited in this development includes the modal structure of

the immediate environment and the instrument data supplied by

the array itself.

B. TIME DOMAIN BEAMFORMING

The acoustic signal received at a given hydrophone can be

expressed as

p(t'x'y'z) = S(t,X,y,z) -N(t'x'y'z), (3.1)

where p is the pressure at the hydrophone, S is the desired

signal and N is the local noise field. All are functions of

time and hydrophone location.

If one now considers the signal received at an array of

hydrophones, equation (3.1) takes the form

10

P(t) = S(t) +N(t) , (3.2)

where p, S and N are all N x 1 vectors representative of the

individual array elements. The location of individual

elements is implied by the vector index for a given

hydrophone.

Classical (or plane wave) beamforming incorporates the use

of a complex steering vector (E) to impose a phase shift on

the individual elements in order to enhance the sensitivity of

the array to signals propagating in a specific direction,

e'e

e30 2

(3.3)

e je

The output signal from such an array is

bfp,(t) = E7(S(t) +N(t)) . (3.4)

The subscript (pw) indicates that the beamformer assumes the

presence of plane waves. Additionally, the implicit

assumption is made in the above expression that the

autocorrelation function of the noise field will be

identically zero for any two (distinct) hydrophones. The

success or failure of the beamformer will be a direct

reflection of the validity of these assumptions.

1i

If the desired signal is not monofrequency, but of finite

bandwidth, simple phase shifting may not be suitable. This is

particularly true if the target signal is carrying information

such that the communication bit time is comparable to, or

greater than the time taken for the wave to propagate across

the array. Under such circumstances, the beamformer would

impose phase shifts in distinct communication bit segments

simultaneously. The resulting distortion to the bandpass

signal is unacceptable in most communications applications.

Beamforming under these conditions requires the application of

true time delays vice phase shifts.

Assuming an array of spatial extent such that time domain

beamforming is required implies a summation of the form

Nbfp (t) E : tT)+~-z, (3.5)
n=1

where n is the index used to describe the array elements and

rn represents the steering delay applied to the nth element

[Ref. 6]. This arrangement places no additional restrictions

on the target signal characteristics or array construction in

a given physical system.

C. THE MODAL BEAMFORMER

The signal model employed above is incomplete, in that it

does not account for the nonuniform distribution of acoustic

energy in the sound channel. Vertical arrays inherently

12

sample the modal structure of the immediate environment.

Therefore, one needs to take the information provided by

normal mode theory into account when the acoustic array spans

a region of nonuniform energy density.

The appropriate refinement to the complex steering vector

which incorporates the modal nature of the signal arrival is

Z 1 (zl) e - :I Z2 (z) e j *2 ZM(zI) e j L

Z (z 2) ej 2: Z 2 (z 2) e*22 e
j

* (3.6)

Z (zN) e i I Z 2 (z) ei* . Z(zN)e "

where the mth column of the matrix is the generalized steering

vector for the mth normal mode. The individual steering

vectors now include amplitude factors (Zm(zn)) that reflect the

value of the eigenfunction at the various hydrophone depths

[Ref. 7]. The nth row contains the values of those steering

vectors at the depth of the nth hydrophone. The phase terms

(V,) account for phase shifts required for the beam steering

applicable to all modes (as required by array geometry) and

phase delays among the various modes due to their individual

propagation speeds. Specifically, the T,, take the form

= On + , (3.7)

where On is determined by the hydrophone location and a. is

determined by the differences in propagation speeds over the

transmission path for the normal modes present.

13

Modifying the steering matrix to implement time delays

(vice phase shifts) is straight forward. A beamformer could

be implemented by summing the output of individual hydrophones

(p(t)) at this point. However, to do so implies a

deterministic evaluation of the am. Such an evaluation would

require near perfect knowledge of the conditions over the

transmission path prior to commencement of the experiment.

Given that the aim of tomography is the mapping of these

conditions, such an approach is inappropriate.

An alternate approach is to utilize the columns of the

matrix individually to discriminate among the modal components

of the signal. Since all components of a given modal steering

vector share a common value of am, these phase terms may be

discarded from the individual elements of the steering vector.

As a result of this simplification, the modal steering vector

is completely determined by the Z. (obtained from normal mode

modeling of the immediate environment) and the desired look

direction (determined by array geometry). Having established

the methodology, and replacing the phase weights with steering

delays, the output of the modal beamformer is

N
bfm(t) E Zm(Zn) Pn((tn) . (3.8)

nl

where the subscript (m) indicates that the desired output is

the component of signal representing the mth normal mode.

Expanding this form to explicitly include the terms

14

representing the signal and noise components of the acoustic

field yields

N N

bfm(t) = Zm(Zn) Sn(r-n) + EZm(Zn) Nn(t-zn) (3.9)
n-1 n-i

where Sn and Nn represent the amplitudes of signal and noise

at the nth hydrophone. The delay and weighting of the noise

received at the hydrophones has no undesirable effects. if

the noise between any two hydrophones was uncorrelated prior

to the operation, then it will remain so after weighting.

Again, the degree to which the ambient noise field is

uncorrelated will ultimately reflect upon the performance of

the beamformer.

15

IV. THE HEARD ISLAND VERTICAL ARRAY

A. ARRAY CONSTRUCTION

The array deployed for this experiment consisted of 32

hydrophones deployed vertically, each having a nominal

sensitivity of -170 dB re 1 V/pPa. The element spacing was 45

meters, with hydrophone number one occupying a design depth of

345 meters. The nominal design depth for hydrophone number 32

was 1740 meters.

Instrumentation on the array consisted of two sensors.

The upper sensor was located 4.0 meters above hydrophone

number one. It recorded ambient pressure, temperature, tilt

and current velocity. The lower sensor was located 5.0 meters

below hydrophone number 20. It recorded tilt (including

direction), pressure, temperature and conductivity. This

sensor appears to have suffered a casualty during array

deployment which rendered its tilt data suspect.

Flotation was provided by one main syntactic float and 28

syntactic football floats. The design called for the main

float to reside at a nominal depth of 230 meters.

Approximately half of the football floats were submerged.

This arrangement rendered the array neutrally buoyant, thus

providing a measure of isolation from surface wave effects.

The array was directly tethered to the R/V Point Sur with

16

floatation devices on the surface portion. Each float was

equipped with a flasher, a flag and a radar reflector. The

float nearest the ship had the addition of a radio beacon.

The procedure called for the ship to remain approximately 1200

meters from the position immediately above the array. During

the experiment the R/V Point Sur was configured to remain

quiet and dead in the water, except as required to keep clear

of the array. Figure (3.1) illustrates the general

configuration.

Main foat

Upper instrument
/

Hydrophones

Lower Instrument

Ballast

Figure 3.1: Heard Island Receiving Array

17

B. INSTRUMENT DATA

Ideally the receiving array, when deployed, is oriented

vertically. However, due to currents, the requirement to

maintain control of the research vessel and other factors

beyond the control of the research team, the array is often

tilted from the vertical. Given the length of the array, a

1.00 tilt results in a 24 meter horizontal displacement

between hydrophones one and 32. This displacement is nearly

one (carrier frequency) wavelength. Ad~itionally, the

direction in which the array tilts affects the component of

horizontal displacement which is collinear to the propagation

direction. Horizontal displacements perpendicular to the

direction of propagation are acceptable if one assumes that

the wave field is fairly uniform is this direction.

Therefore, the array steering utilized in this work seeks only

to correct for the component of displacement in the direction

of signal propagation.

The speed with which the wave field propagates is required

prior to the calculation of steering delays. The appropriate

speed to use in this case is the group speed of the carrier

frequency for the mode in question, defined as

c - dw (3.10)

where cg, is the local group speed for the mth normal mode, w

is the radian frequency and Km is the appropriate eigenvalue.

18

The amplitude weight applied to a given hydrophone is a

function of the mode number sought and hydrophone depth. The

mode shapes (Zm(z)) are required prior to beamforming. The

numerical algorithm used to obtain the eigenvalues and

eigenfunctions for this work was developed by Chiu and Ehret

(Ref. 5]. It utilizes finite differencing of the propagation

vectors for a given frequency and sound speed profile to

calculate the modal structure of the local environment. The

sound speed profiles were measured during the conduct of the

experiment by the research team aboard the R/V Point Sur.

Figure 3.2 is the sound speed profile used for this analysis.

Figures 3.3 through 3.5 are the output of the normal mode

model. Amplitude weights for the array elements were

calculated from these data sets.

19

Sound Speed Profile
Heard Island Receiving Array

0

-200

400

-600

L-

*,4100

1 0 0
-1600(D -0

E............
-1000~

1475 1480 1485 1490 1495 1500

Sound Speed (meters/second)
Figure 3.2: Sound speed profile at receiving array.

20

Mode One Mode Two

4W

..... s

..........

IB0........ A

.121

Mode Three Mode Four

..

44W

................. 4 0

......................

..... I

U ' 12
0

Egeonf uncio aplitude0
Figure 3.4: Normal modes three and four.

22

Mode Five Mode Six

-

4.'

.............................

.. ~...

0 -12M~~........:......

........................

Figure 3.5: Normal modes five and six.

23

C. DATA ACQUISITION AND PREPROCESSING

Once deployed, the receiving array recorded numerous data

sets, each lasting in excess of 60 minutes. Each recording

comprises 32 channels of acoustic data. The hydrophone output

was ported to a patch panel and preamplifier where a fixed

gain of 26 dB was applied. Following this, the signal passed

through a variable gain amplifier which automatically set the

signal gain to optimize the 10 volt dynamic range of the

analog to digital converter. This process had the duel effect

of enhancing the precision of the data and preventing

saturation of the A/D converters. Subsequent normalization of

the data set to hydrophone output levels was accomplished by

an implementation of a program written by Keith Von der Heydt

of Woods Hole Oceanographic Institution.

Analog to digital conversion utilized a sampling frequency

of 228 Hz. The signal was passed through an analog bandpass

filter prior to conversion. This prevented aliasing of

frequencies above Nyquist into the data set. Low frequency

noise components were also attenuated. The cutoff frequencies

for the bandpass filter were 10 and 80 Hz. Data storage

utilized both optical disk and magnetic tape. Data

acquisition and preprocessing of the data sets used in this

work was conducted by Miller, Chiu, Frogner and others.

Figure 3.6 illustrates the equipment alignment. (Ref. 81

24

10-80 Hz0, 9, 18, 27, or 36 dB Gain

Figure 3.6: Data acquisition system

25

V. RESULTS AND CONCLUSIONS

The desired result of this research is the development of

a software package capable of beamforming a tomography signal.

The beamformer should discriminate among the various modal

components of the signal, thus enabling one to treat the modes

individually. Due to the inherent nature of vertical arrays,

the software needs to incorporate information pertaining to

the time varying array tilt and individual hydrophone depths.

To this end, the beamformer utilizes a duty cycle. Each such

cycle commences with an assessment of array geometry. This

information is used to determine the appropriate steering

delays and hydrophone weighting coefficients. Once

established, the beamformer processes 60 seconds of acoustic

data before repeating the procedure. In this manner, the

software package implements a quasi-stable virtual array in

which the virtual aperture remains fixed in space.

The results presented examine two performance aspects.

The first pertains to array geometry description. Calculation

of the steering delays and amplitude weights is detailed.

Additionally, the acoustic output of the array is compared to

that of a single hydrophone on the sound channel axis, thus

allowing for a quantitative evaluation of the ultimate

performance of the beamformer.

26

A. HYDROPHONE DELAY AND WEIGHTING

Information regarding array geometry was provided by two

instrument packages. The upper sensor was located 4.0 meters

above hydrophone number one, the lower sensor 5.0 meters below

hydrophone number 20. Figure 5.1 illustrates the instrument

configuration and coordinate system used in determining the

array's spatial orientation.

NORTH

Upper Instrument :
NS current speed 2
EW current speed
Temperature

PressureTit

Lower Instrument: y /

Temperature Tt
Pressure
Conductivity

NS tit
EW tilt z

Figure 5.1: Array Instrumentation

27

1. The Upper Sensor

Information provided by the upper instrument includes

the component of current velocity in both the north-south and

east-west directions, ambient pressure, temperature and tilt.

The direction in which the array tilts is determined by the

current direction. The primary assumptions being that the

current acting on the array is independent of depth and that

the direction in which the array tilts is completely

determined by the current direction.

In making these assumptions, one considers the primary

source of current measured by the instrument to be a result of

ship positioning adjustments. As mentioned previously, the

R/V Point Sur was required to periodically move the ship in

order to remain clear of the array. Such movements were

intended to straighten the tether between the array and the

towing rig, thus preventing the tether from becoming fouled in

the ship's propellers. These adjustments resulted in a

tensioning of the tether. It is this tensioning that is

considered to have resulted in array movement and consequent

water flow across the instrument package. Based on this

assessment, the assumption that tilt direction was determined

by the flow measured at the upper instrument is consistent

with the conditions of the experiment. Higher order models

could be derived for array dynamics, however this research has

utilized the first order model of a linear array.

28

The next variable pertinent to array geometry is the

pressure measured by the upper sensor. From this it is

straight forward to calculate the sensor's depth using the

following relationship,

Z = P-latmosphere (5.1)

pg

where P is the pressure (in pascals) measured by the

instrument, p is the density of seawater and g is the force of

gravity.

Figures 5.2 and 5.3 present the data received from the

upper instrument package during two of the acoustic recording

periods. The recording beginning 00:05 (GMT) January 27

coincides with the reception of a m-sequence of length 2047.

A continuous wave signal was received during the recording

beginning 15:05 (GMT) January 27. They are representative of

the most and least favorable conditions encountered during the

course of the experiment.

29

Array Geometry

.........

~1 2

.....Depth -' 4
..o.1

0
0 M *74c rIrI<i

180

0 z___ODv___i

Figure 5.2: Array geometry for 00:05 (GM4T) January 27.

30

Array Geometry
IS

.~l i

..

..i t

..

6 6

..

Oz

31J1

2. The Lower Sensor

The lower sensor was intended to provide a redundant

source of array positioning data. Specifically, it measured

tilt in the north-south and east-west directions, temperature,

pressure and conductivity. As discussed previously, the lower

instrument appears to have suffered a casualty which rendered

the tilt data suspect.

Figure 5.4 indicates that an event occurred which

caused the sensor to provide data which is not consistent with

the assumed array geometry. One scenario explaining the event

is that the sensor failed shortly after entering the water.

Another possible explanation is that the array became

entangled in itself upon descent.

All array tilt data was stored for subsequent analysis

ashore. Therefore, the research team had no knowledge of the

apparent failure during the conduct of the experiment. As

there was no reason to suspect the instrument, no

investigation was made to determine the source of the

inconsistencies.

32

Lower Sensor Output
30 2W0

2 A AI
2 5 '- ~~~~~~ ~~~~~... i......................f ::..... !....

.. . .

! M
2 0 -............ :......... 0 0 "

® 5 T....;

0 I -1 !

........ (mintes

.15 [l....
Depth 6OO

...............

o 5 100115020253003NO400450500

Time (minutes)

Figure 5.4: Lower sensor output upon deployment.

33

3. Steering Delays

Time delays must be applied to each of the hydrophones

in order to correct for array tilt. However, only the

component of horizontal displacement collinear to the signal

propagation direction is used to calculate the time delay.

This requirement mandates apriori knowledge of the propagation

direction. Prior work has determined that the expected

direction from which the signals would arrive is 217.0 true

[Ref. 9].

In addition to array geometry and propagation

direction, one requires a nominal propagation speed to convert

the horizontal displacements to time delays. The appropriate

speed to use is the mode group speed, as previously discussed.

Group speeds for this study were obtained from eigenvalues

calculated by the normal mode model courtesy of Chiu and Ehret

[Ref. 5]. The mode group speed of the carrier frequency was

used to calculate time delays. Figure 5.5 presents the mode

group speeds as a function of frequency for the lowest five

modes.

34

Mode Group Speeds
1482.0

1481.5

S1481.0

.~1480.5

..................T.M ode.O ne ...a1480.0
+ Mode Two

Mode Three
1479.5 Mod F......r.

I 479.0 -Mode Five
10.0

o 1O2 304050 6070
Frequency (Hz)

Figure 5.5: Mode group speeds.

35

4. Hydrophone Amplitude Weighting

Application of hydrophone weights utilizes the array

geometry to determine the depth of each array element. The

value of the depth dependent function (Z.) is then assigned to

the appropriate hydrophone output. This manner of weighting

enhances the array sensitivity to the mth normal mode.

An additional consideration encountered in hydrophone

weighting is fault tolerance. Vertical acoustic arrays

operate in a hostile environment, thus individual hydrophones

may fail. The amplitude weights applied to the array must

cope with the failure of individual elements. To this end,

the beamformer applies a weight of zero to elements which have

been evaluated as unreliable.

Log books kept by the research team aboard the R/V

Point Sur indicating suspect hydrophones were verified by post

processing statistical analysis of the individual elements.

Several hydrophones were found to have failed during the

course of the experiment. Specifically elements 18 through 28

were evaluated as unreliable. As a result of this

determination, only hydrophones one through 17 were used to

beamform the target signals.

B. ACOUSTIC PERFORMANCE

The preliminary data analysis seeks to quantify the

beamformer's performance with respect to a single hydrophone

located on the sound channel axis. The power spectrum

36

calculated from the output of hydrophone five was compared to

the spectra calculated from the beamformed output of channels

one through 17. The array gain is defined as

/SNRA) 52
AG 101og10--n), (5.2)

where SNRA is the signal to noise ratio of the beamformed

output and SNRn is the signal to noise ratio of the nth

hydrophone [Ref. 10]. The SNR for each case was calculated by

integration of the power spectra over a 6.0 Hz bandwidth

centered on the continuous wave frequency.

The array gain was calculated for numerous power spectra,

each representing 60 seconds of acoustic data. Additionally,

the gain was calculated for the lowest five normal modes

present. Values for array gain range from a low of 2.5 dP to

a high of 8.5 dB. The nominal array gain is 6 dB.

Reasons for the range in values include temporal

variability in the modal components of the signal, errors

introduced in the steering delays and errors in amplitude

weighting. Time delay and amplitude weight errors are the

direct result of assumptions made regarding arxay geometry.

The primary source of geometric error is considered to involve

the assumption that tilt direction is completely determined by

current direction. Array tilt bearing may not be aligned well

with current direction during periods when the direction of

flow across the sensor is varying. Therefore, during periods

37

of variable current flow, marginal performance can be expected

of the beamformer.

Figures 5.6 through 5.11 present representative power

spectra of single channel data and beamformed data for modes

one through five over the entire range of frequencies

analyzed.

Hydrophone Five Power Spectrum
9x 1o -6

S xl0"O -
7 X 1 0 s

..

7x 10-6- --

x 1 0 "5 i.............

2 x 1 0 's'... ...

lx 1 O s
2X106

0 20 40 s0 so 100 120
Frequency (Hz)

Figure 5.6: Hydrophone five power spectrum.

38

Mode One Power Spectrum

3.Oxl10 4

2.0x10'

0.0x100

0 20 40 80 80 100 12

Frequency (Hiz)

Figure 5.7: Mode one power spectrum.

Mode Two Power Spectrum

S5.0x10-4

4.0x1O-4

S 2 .0 x 1 0 -4..

1 .0 x10 -4

OOx10cR o.
a0 2 40 80 so 100 120

Frequency (Hz)

Figure 5.8: Mode two power spectrum.

39

Mode Three Power Spectrum

13.0x 104

0 20 40 s0 80 100 120
Frequency (Hz)

Figure 5.9: Mode three power spectrum.

Mode Four Power Spectrum

4 .Ox1O-4

3.40x-10-4 - - ------

2 2.OXlO04 1.......
O.Oxl 0'P

0 20 40 60 80 100 120

Frequency (Hz)

Figure 5.10: Mode four power spectrum.

40

Mode Five Power Spectrum

" 5 .0 x 10 -4

p.ax C - ' " -,

2 .O X lO -4
.- 1........

j . O 1.0...........O.

0 20 40 so M1 1 120

Freqluency (Hz)

Figure 5.11: Mode five power spectrum.

As shown in the previous figures, the noise field at the

beamformer is not incoherent. This fact, coupled with

imperfect geometric array description, detracts from the

calculated array gain.

One feature worth noting is the decreasing strength of the

undesirable tonal components with increasing mode number,

specifically those in the 40 to 50 Hz range. Presumably,

these components were radiated by the R/V Point Sur. One

hypothesis is that the strength of these signals in mode one

is the result of grating lobes in the array's beam pattern for

this mode. The amplitude weights applied to the hydrophones

are similar to those for a plane wave beamformer, in that

there is no phase shift applied along the array in the form of

41

coefficients of differing sign. Therefore, spatial aliasing

is possible for frequencies with wavelengths less than twice

the hydrophone spacing. For the Heard Island array, this

includes frequencies ranging from 17 Hz to the bandpass cutoff

frequency of 80 Hz.

As the mode number sought increases, these frequency

components ;iiminish in strength. This indicates that the

rejection of coherent noise of local origin improves as the

number of 1800 phase changes applied to the hydrophone output

increases.

Also shown in these figures is the presence of distant

sources of coherent noise. These other tonal components are

seen to vary both as a function of mode number and time. This

observed behavior is consistent with modal propagation in a

range dependent environment. Merchant traffic in shallow

water and offshore drilling activity are two possible

candidates for sources of coherent noise which becomes coupled

into the sound channel.

Figures 5.12 through 5.17 present the same power spectra

in the immediate vicinity of the carrier frequency (57 Hz).

Again, the beamformed output indicates successful attenuation

of undesirable components of a coherent noise field,

presumably of local origin.

42

Hydrophone Five Power Spectrum
5.OXl O-6

2.0xl16 - ---

O.0x100cp
54 55 56 57 58 59 so

Frequency (Hz)

Figure 5.12: Hydrophone five power spectrum.

Mode One Power Spectrum

8.OX10-4

&0x 10-5

O.0x100
LL________

54 55 56 57 58 59 0
Frequency (Hz)

Figure 5.13: Mode one power spectrum.

43

I.OXC-4 Mode Two Power Spectrum

2.Ox1OL. "---- - ---

54 55 58 57 58 59 60

Frequency (Hz)

Figure 5.14: Mode two power spectrum.

J.OXO-4 Mode Th :ree Power Spectr :um

I .Ox10P

54 55 56 57 58 5 60G

Frequency (Hz)

Figure 5.15: Mode three power spectrum.

44

I.OXO-4 Mode Four Power Spectrum

1 .0 x 1 0 6 -- - - -- - - -..

4.OxlOP

54 55 56 57 58 59 60

Frequency (Hz)

Figure 5.16: Mode four power spectrum.

Mode Five Power Spectrum

8.0X1084

---- --x l -...
8.0X10-6

54 55 56 57 58 59 80

Frequency (Hz)

Figure 5.17: Mode five power spectrum.

45

C. CONCLUSIONS

Modal beamforming is a valuable technique for use in long

range tomography experiments. The signals presented ir this

work traversed the longest transmission path for which

reception was attempted during the course of the Heard Island

Experiment. Although no travel time estimates have been made,

the successful detection of the signals indicates that large

scale tomography experiments are feasible.

The primary concern of this work was the development of

a system capable of detecting the acoustic signals emanating

from the vicinity of Heard Island. This has been

accomplished. Additionally, the data describing the complex

dynamics of the near vertical acoustic array has implications

lor the design and construction of vertical arrays for use in

future tomography experiments. The most troublesome aspect of

this work has been the accurate determination of array

geometry, specifically tilt direction. Describing tilt

direction in terms of measured current at one point on the

array is considered inadequate.

D. RECOMM4ENDATIONS

Improvements to this implementation include physical

aspects of the array itself and performance of the numerical

algorithm. Large vertical arrays are particularly sensitive

to errors in estimated geometry. In this experiment, an error

46

of 0.250 in tilt (assuming perfect knowledge of tilt

direction) creates a phase error of 45 degrees between the

most distant elements. This error is more destructive t, che

higher modes owing to their greater spatial extent. The

problem is aggravated by questionable tilt direction data.

Construction of future vertical arrays should incorporate

multiple instrument packages which directly measure tilt and

direction. As this was the case with the lower instrument on

the Heard Island array, it is most unfortunate that it failed.

Additionally, an investigation into the utility of higher

order models describing array shape would be illuminating.

Incorporating a quadratic model for array shape would not

impose a significant computational load on the beamformer and

may improve the estimated position of individual hydrophones.

The current implementation of this beamformer utilizes

third order polynomial interpolation during the application of

time delays to individual hydrophone outputs. As such it

represents the greatest computational load in the program.

The interpolator is based on Neville's algorithm [Ref. 11].

No attempt was made to minimize execution time. As a result,

the software requires approximately four hours to process one

hour of acoustic data. A more efficient interpolator may

reduce execution time sufficiently to permit this technique to

47

be used for real time modal beamforming. To this end, the

software is assembled from modular components, thus allowing

for improvements on a function by function basis.

48

APPENDIX A

The following programs were developed during the course of

this research. They include the modal beamformer and

associated utility programs. These programs may be obtained

by contacting James H. Miller at his address in the initial

distribution statement.

A. THE MODAL BEAMFORMER

1. Operational Considerations

The modal beamformer was designed with portability a

prime consideration. As a result, there are numerous program

parameters which must be set by the end user. Among these are

the characteristics of the physical array and data acquisition

system. All such user selectable parameters are contained

solely within the program definitions. The parameters appear

below in the same order in which they appear in the program.

* UNIX VERSION: selectively compiles either unix or ansi
compatible code blocks.

* ASCII: selects output in either ascii or binary format.
Ascii is useful for data export, binary saves storage
space.

* SIGNAL: permits user to enable or disable the beamformer's
time series output.

" SPECTxUM: permits the user to enable or disable the
beamformer's power spectrum output.

49

* LOWERSENSOR: directs the program to load or ignore lower
tilt sensor data. This option should remain OFF as there
is no reliable lower sensor data.

" VALIDATE: enables program validation. If selected the
program will create output files which list the array
geometry, steering delays, hydrophone weights and
calculated mode group speed. This feature is useful for
program debugging.

" ERROR ESTIMATE: if selected, this feature causes the
polynomial interpolator to store the upper bound on the
mean squared error in the steering delays. This feature
doubles the output of the beamformer.

" ON: logical switch for program control.

" OFF: logical switch for program control.

" INTERPOLATE: selects interpolator. This feature permits
the installation of an improved interpolator without the
requirement to search for and replace each call to the
function.

" ORDER: indicates the degree of the polynomial used in the
polynomial interpolator.

" STEP: indicates the number of points on either side of a
sequence to be taken when estimating derivatives.

" TINY: prevents division by zero in floating point
operations.

" PI: used for trigonometric recursions.

" RADIAN: used for degree to radian conversions.

" OFFSET: indicates the distance (in meters) between the
number one hydrophone and the upper tilt sensor.

" DELTAR: indicates array element spacing (in meters).

" CTD OFFSET: indicates the difference in depth between the
sound speed profile's first data point and the depth
increment used in the profile (in meters).

* SSPLENGTH: indicates the maximum number of data points
that an eigenfunction may contain. The only restriction
applicable to this parameter is available Nemory.

50

" EIGVAL LENGTH: indicates the maximum number of
eigenvalues that the program will accept. The only
restriction applicable to this parameter is available
memory.

" LOOK DIRECTION: the compass direction (in degrees true)
from which the signal arrives.

* TILTBUFFER: the buffer length allocated to tilt data.
The only restriction applicable to this parameter is
available memory.

" BUFFERTIME: the length of time (in seconds) represented
by the acoustic data input buffer. This period represents
the output buffer length plus one second on either end to
permit steering delays and/or advances. The array is
currently capable of end firingka 1500 meter acoustic
array. This parameter must be an integer. Additionally,
60 must be an integer multiple of (BUFFER TIME-2). The
array has a duty cycle of one minute between design
changes. There must be an integer number of output
buffers per duty cycle.

" F SAMPLE: sampling rate of the data acquisition system.
This value must be an integer.

* CHANNELS: the number of hydrophones on the array.

" F CARRIEL: the carrier frequency of the target signal.
The group speed used in calculating steering delays is
based on this frequency. This must be entered in floating
point.

" FFT LENGTH: the length of the FFT used if frequency
domain output is selected. This value must be a power of
two which is less than or equal to the number of samples
in a single channel of input data.

" SWAP: a macro used in calculating a FFT.

The following program functions are adaptations of

those found in Reference 11:

* polint: performs the polynomial interpolation.

* realft: calculates Fast Fourier Transforms.

0 fourl: calculates Fast Fourier Transforms

51

" vector: allocates memory for one dimensional arrays.

" matrix: allocates memory for two dimensional arrays.

" freematrix: deallocates memory from two dimensional
arrays.

" ExitOnError: provides abnormal program termination.

2. Beamformer Source Code

* PROGRAM: BEAMFORMER vsn 1.0
* WRITTEN BY: Steven Crocker
* LAST UPDATE: October 9, 1991

* This program takes input from various data files and the user. It
* outputs a data file. The inputs are a number of channels of digital
* acoustic data, and information regarding the physical characteristics
* and geometry of the receiving array. Additionally, environmental data
* in the form of normal mode eigenfunctions and eigenvaLues at the
* receiving array are required to operate this beamformer. The output
* is a single channel of acoustic data.

**/

#define UNIX VERSION /* either ANSI or UNIX */
#define ASCII ON /* select output mode ON or OFF */
#define BINARY OFF /* select output mode ON or OFF */
#define SIGNAL ON /* either ON or OFF */
#define SPECTRUM ON /* either ON or OFF */
#define LOWER SENSOR OFF /* either ON or OFF */
#define VALIDATE OFF /* either ON or OFF */
#define ERRORESTIMATE OFF /* either ON or OFF */
#define ON 1 /* logical "switch" *
#define OFF 0 /* logical "switch" *
#define INTERPOLATE polint /* polint */
#define ORDER 3 /* order of interpolator (odd)*/
#define STEP 1 /* number of steps for derivatives */
#define TINY 1.0e-25 /* prevents division by zero */
#define PI 3.14159265359 /* for freq to omega conversions */
#define RADIAN 57.2957795131 /* for degree to radian conversions */
#define OFFSET 4.0 /* dist btwn upper sensor and phone #1 *
#define DELTA R 45.0 /* array element spacing */
#define CTDOFFSET 0.5 /* diff btwn ctd depth inc & 1st depth *(
#define SSPLENGTH 2500 /* max number of pts in eigunfunction */
#define EIGVALLENGTH 230 /* max number of eigenvalues */
#define LOOK DIRECTION 217.0 /* direction from which signal arrives */
#define TILT-BUFFER 120 /* max length of tilt data vectors */
#define BUFFER TIME 12 /* input buffer Length in seconds (int)*/
#define F SAMPLE 228 /* sampling frequency (int)*/
#define CHANNELS 32 /* number of channels processed */
#define F CARRIER 57.0 /* carrier frequency
#define FFT LENGTH 2048 /* radix 2 <= (BUFFER TIME-2)*FSAMPLE */
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

#include<stdio.h>
#include<malloc.h>
#incLude<math.h>

#if defined (ANSI
#incLude<fLomt.h>

52

#incLude<stdtib.h>
int getlnput(void);
int putOutput(void);
int processTilt(fLoat **x, fLoat **y, fLoat **z);
int processModes(float **z, float *weight, float *ptrC);
mnt dydx(ftoat *x, float *y, float *ddx, int points);
int potint(fLoat *xa, fLoat *ya, int n, float x, float *y, float *dy);
int reaLft(fLoat *data, int n, int isign);
int fourl(ftoat *data, int nn, int isign);
float *vector(jnt Length);
float **matrix(int row, int coL);
mnt free matrix(fLoat **m, int row);
void ExitOnError(char error txto));
Weif defined (UNIX
int vectoro,

oatrixo;
get Input 0,
putoutput 0,
processTi Ito,
processMocleso,
dydlxO,
poLinto,

reaLftoC,
fourl(),

free matrixo),
ExitOnErroro;

#endif

/* Global Variable Declarations *
float **inSOUNO, *OutSOUND, *MeanSqError, Max=O.O, Min=l.0e25;
int LastMinute, Minute=l, firstBufferl;

main()

FILE *fpVl;

float **x, **y, **z, *indx, *samples, arg, ans, err, *deLay,
*deLta, *weight, *pwrSpectrum, Cgroup;

/* Memory Allocation and Tilt Data Processing *
x=(fLoat**)matrlx(CHANNEL.S, TILTBUFFER);
y--(fLoat**)matrix(CHANNELS, TILTBUFFER);
z=(fLoat**)matrix(CHANNELS, TILTBUFFER);
processTiLt(x, y, z);

if (VALIDATE==ON)

printf(Q\nDumping array geometry to array.dat\n");

fpVlfopen("array.dat", "wt");
if(fpVl==NULL) ExitOnError(CError opening validlation file");

fprintf(fpVl,"ChanneL\t\t X\t\t Y\t\t Z\n");

for (i=1;i<=LastMinute;i++)

fprintf(fpVl, "MINUTE: %i\n", 0n;
for (j:1,j<=CMANNELS;j++)

fprintf(fpVl,"%i\t).f\t %f\t %f\n",j,xtj)(i),yjEi),zj[i));
/ * for */

fcLose(fpVl);
/ * if */

/* Memory ALLocation*/
weight=(t Loat*)vector(CHANNELS);

53

indx=(fLoat*)vector(ORDER+i);
detay--(f oat*)vector(CNANNELS);
deLTa=('Loat*)vector(CHANNELS);
outSOUND=(f Loat*)vector((BUFFER TIME-i)*F-SAMPLE);
inSOUND=(fLoat**).atrix(CHANNELS, BUFFER TIME*F SAMPLE);
if ((shift=(int*)mal Ioc((CHANNELS41)*sizeof(int)))==NULL)

ExitOriError("Meuory aLLocation failure for shift[].");
for 0=1; iC-ORDER+1; i++) indxti3=(ftoat)i;
if (ERROR ESTIATEON)

NeanSqError=(f Loat*)vector((BUFFER TIME-i)*FSAMPLE);
if (SPECTRUM=0ON) pwrSpectrum=(fLoav*)vector(FFT.LENGTH/2);

whi Le(Minute<(=LastMinute)

1* Mode Data Processing *
process~odes(z, weight, £Cgroup);

1* CaLculate delays, shifts, etc *
for 0=1; i<=CHANNELS; i++)

deLay~i3xi3CMinute3/Cgroup; /* Time delay *
shift~i)=(int)(deLay~i)*(fLoat)FSAMPLE); /* # of samples *

/* fraction of 1 sample */
deLta~i)=deLay~i)*(fLoat)FSAMPLE-(fLoat)shifti];

} * for *1

if (VALIDATE==ON)

printf("Dumping element delays to deLay.dat\n");

if (firstBuffer)

if ((fpV1=fopenC'deLay.dat", "wt")) ==NULL)
ExitOnError("Error opening validation file.");

) * if *
else

if ((fpV1=fopen("deLay.dat", "at")) ==NULL)
ExitnnError("Error opening validation file.");

/ * else *

fprintf(fpV1,"MINUTE: %i\n", Minute);

fprintt(fpVl,
"ChanneL\t delay\t\t mnt shift\t fraction of 1 shift\n");

for (ii; i<=CHANNELS; i++)

i,deLay~i],shiftti3,cdeLta~i3);
/ * for */

tcLose(fpVl);

printf("Dumping phone weights and grp speed to modat..dat\n");

if(firstBuffer)

if ((fpV1=fopen("mocdaL.dat", "wt")) ==NULL)
ExitOnError("Error opening validation fiLeAn");

fprintf(fpVl,"Group speed for FCARRIER is: %g\n\n\n",Cgroup);
) * if *

else

if ((fpVl=fopen("modaL.dat","at")) ==NULL)
ExitOnError("Error opening validation fiLe.\n");

fprintf~fpVl,"\nHydrophone weights for minute %i\n",Minute);
/ * else if *

54

fprintf(fpVl, "Channe. \tueight\n");

for (11l;i<CHANNELS;i++)
fprintf(fpVl, "%i\t/e\n~i,weightliJ);

fcLose(fpVl);
)/* if */

if (SPECTRUMON)
for (k=l;k<=FFTLENGTH;k++) pwrSpectrumEkJO0.O;

for (n1l; n<=60/(BUFFER-TIME-2); n++)

get InputoC;

if(first~uffer) /* Produce first output buffer *

for 0=1; i<=FSAMPLE; i++)

outSOUNDti3=0.O;
if (ERROR -ESTIMATE==ON) HeanSqErrorti3=O.O;

/ * for */
for (j:FSAMPLE+l; i<=CBUFFERTIME-1)*FSAMPLE; i++)

outSOUNDi)=O.O;
if (ERRORESTIMATE==ON) MeanSqError~il=O.0;

for (j1l; j<=CHANNELS; j++)

if (cleLay~j)>=O.O)

arg=(f~oat)(ORDER+1)f2.O4Cl-de~tatj));
sampLes =&inSOUND~j]Ei-shift~j)-(ORDER41)/2],

1/* if */
else if (deLay~j)<O.O)

arg=(fLoat) (ORDER+1)/2.O+deLta~j);
samples = &inSOUND~j)Ei-shift[jJ-(ORDER+1)/2+1);-

1 * else if */
* INTERPOLATE(indx, samples, ORDER.1, arg, &ans, &err);

outSOUNDE i =outSOUNDi)+ans;
if (ERROR ESTIMATE==ON)

MeanSqError~i])MeanSqErrorl+err*err;
1 * for */
if(fabs(outSOUND~il)>Max) Maxfabs(outSOUNDi);
if(fabs(outSOUNDE'))<Min) Minfabs(outSOUND~i));
if (ERROR ESTIMATE==ON)

MeanSqirrori]JMeanSqError~i)I(f Loat)CHANNELS;
1/* for *

/*f if */
else ft Produce subsequent output buffers *

for (i=FSAMPLE+1; i<=(BUFFER-TIME-1)*FSAMPLE; i++)

outSOUND~i-FSAMPLEI=O.O;
if (ERRORESTIMATE==ON) MeanSqError~i-F SAMPLEJO0.O;

for (j1; j<=CHANNELS; j++)

if (deLay~j)>0O.O)

rg=(fLoat)(ORDER+1)/2.0+(l-dettarjl);
sampLes = &inSOUND~jliC-shift[jJ-(ORDER+1)/1;
1 *if */

else if (deLay~j)<O.0)

arg=Cfloat) (ORDER+1)/2.O+deLta~j);
samples =&inSOUND~j)(i-shift~j)-(ORDER+1)/2+1);

55

/ * else if *
INTERPOLATE(indx, samples, OROER+1, arg, Sans, &err);
outSOUNDEi-F SAMPLEIoutSOUND~i-F-SAMPLE+ans;
if (ERROR ESTIMATE==ON)
MeanSqError~i-F-SA E=enq~rriFSAMPLE].err*err;
/ * for */

if(fabs(outSOUND[i-F SAMPLE))>Max)
Maxfabs(outSOUND~i-FSAMPLE));

ift(fabs (out SOUNDti-F SAMPLE D)<Min)
Min=fabs(outSOUND~i-FSAMPLE));

if (ERROR ESTIMATE==ON)
MeanSqErrori-FSAMPLE)=Mear.SqErrori-F SAMPLEJ/

(1 toat)CHANNELS;
3 /* for *

}/* else */
if (SIGNALO=N) putOutputo;

if (SPECTRUM==ON)

window(outSOUND, FFTLENGTH);
reaLft(outSOUND, FF1 LENGTH/2, 1);
for (k0;-k<FFT-LENGTH-k += 2)

pwrSpectrumtk/2+1)=pwrSpect rum~k/2+1 3+
outSOUND~k3*outSOUNDtk)+outSOUNO~k+1)*outSOUND~k+13;

) /* for *
/ * if */

firsteuffer=O; /* set first~uffep to false *
3/* for */

if (SPECTRUM==ON)

for (W; k<=FFT_LENGTH; k++)
pwrSpectrum~k)=pwrSpectrumtk)*(f bat) (BUFFERTIME-2)/60.O;

dumpSpect rum(pwrSpect rum);
1 * if */

printf('\VJ minutes of input data processed.\n", Minute);
Minute-+; 1* increment minute counter *

/ * while */
printf("EXECUTION COMPLETE: End of tiLt data encountered\n");
printf("Maximum magnitude encountered was: %e\n",Max);
printf("Minumum magnitude encountered was: Wen",Min);
exit (0);-

/0&0*0 ****************** ... ~.,., EN main...

*FUNCTION: getlnput()

* This function handles all acoustic input. It also provides one of
* two normal process terminations available in the program. (The other
* is Located in memno.)

*Arguments: none

*Return value: 0

*Functions called: vector() ExitOnError()

*Definitions called: ANSI UNIX
*F SAMPLE CHANNELS
* 8UFFER-TIME

*Global. variables caLLed: inSOUND[3t) Min
*firstBuffer Max

56

*Significant memory aLLocation: diskflufferE)

#if defined (ANSI
int getlnput(void)
#eLif defined (UNIX
getlnput()
#endif

mnt i, j, buffer, items;
fLoat *diskButfer;
char fiLeName[8OJ;
static FILE *fpStatic;

if (firstBuffer)

printf('Enter f-d~c name for input acoustic data:)

it((scanf(Q%s", fi Lelame))==EOF)
ExitOnError("FataL error in scanfo");

printf("\n\n");

if ((fpStatic=fopen(fi LeName, "rb")) ==NULL)
ExitanError('Error opening INPUT ACOUSTIC data fiLe.");

1/* if */

/* Memory ALLocation *
if(firstfluffer) buffer=BUFFER -TIME*F SAMPLE*CHANNELS;
eLse buffer=(BUFFER -TI ME-2)*F SAMPLE*CHANNELS;
disk~uffer=(f Loat*)vector(buffer);

items=fread((char*)(diskBuffer+l), sizeof~fLoat), buffer, fpStatic);
if (items=buffer) /*continue*/;
eLse if(ferror(fpStatic) !=0)

ExitOnError("Error encountered whiLe reading input acoustic data");-
eLse if~feof(fpStatic) !=0)

printf('\t End of FiLe reached: EXECUTION COMPLETE\n");
printf(c\t\t%i minutes of data processed\n",Minute-1);
printf(C\t\t%i bytes of data discarded\n", items*sizeof(ftoat));
printf("\t\tMaximum magnitude encountered was: %e\n",Max);
printf("\t\tMinimum magnitude encountered was: %e\n",Min);
printf("\t End of File reached: EXECUTION COMPLETE\n");
printf("\t****************' .A' A. s..\n
fcLose(fpStatic);
exit (0);
/ * eLse if *

eLse ExitOnError(CUnknown error handLing acoustic input file.');

for (iP1; i<=BUFFER_TIME*FSAMPLE; i++)

for (j=l; j<zCHANNELS; j++)

if (firstBuffer)

inSOUNO~j]ti) = disksuffer[CHANNELS*(i-l)+j);
1 * if *

eLse

if(i<=?*F SAMPLE)
inSOUND~j]Ei)=inSOUND~j)(i+(BUFFERTIME-2)*F SAMPLE];

eLse
inSOUNDEj]ti)=diskBufferECHANNELS*(i-2*F-SAMPLE-1)+j);

1 * eLse *
/ * for *

1 * for *

57

1* DeaL Locate Memory *
free((char*)diskauffer);
return(0)

I***END get Input ***

*FUNCTION: putoutput()

*This function handLes all acoustic output. Additionally, it outputs
*the estimated mean squared error from the interpoLators (if enabled).

*Arguments: none

*Return value: 0

*Functions called: ExitOnError()

*Definitions catled: ANSI UNIX
* F SAMPLE BUF FER-TIM~E

*Global variables called: outSOUNDE] MeanSqError[)
* firstBuffer

*Significant memory allocation: none

Wi defined (ANSI
int putOutput(void)
Weif defined (UNIX
putOutput (
0endlif

int i, cut;
char fiLeName[12), model2);
static FILE *fpOutSound, *IpMSE;-

if(first~uffer)

if (ASCIION)

mode[0O=,w';
modetl3=tt;

) * if */
else if (BINARY==ON)

modet0l='w';
mode~lJ='b';

/ * eLse if *

cut~1;

printf("Enter file name for output data:')

if((scanf('%s", fi LeName))==EOF)
ExitOnError("FataL error in scanfo");

if ((fpOutSound=fopen(fiLeName, modle)) == NULL)
ExitOnError("Error opening OUTPUT data file.");

if (ERRORESTIP ATE==ON)

printf("Opening file error.dat~n\n");

if ((fpfMSE~fopen("error.dat", mode)) == NULL)
ExitOnErrorC"Error opening error.dat");

/ * if *

58

else cut=2;

if (ERROR ESTIMATE==ON)

if (ASCIION)

tar 0=1; i<=(BUFFER -TIME-cut)*FSAMPLE; i++)
fprintf(fpMSE,"%e\n", MeanSqErrorliJ);

/ * if */
else if (BINARY==ON)

if(fwrite((char*)(MeanSqError+1),sizeof(f bat), (BUFFERTIME-cut)*
FSAMPLE,fpMSE)=(unsigned)(BUFFER-TIME-cut)*F-SAMPLE);

eLse if(ferror(fpMSE) !=0)
ExitOnError(CError encouJntered writing error data");

else ExitOnError("Unknown error handLing error file.');
/ * else if *

1/* if */

if (ASCII==ON)

for (=l;i<=(BUFFER -TIME-cut)*FSAMPLE; i++)
fprintf(tpautSound, '%e\n", outSOUNDil);

1 * if *f
else if (BINARYON)

ifCf write((char*) (outSOUND+1) ,sizeof Cf bat),(BUFFER TIME-cut)*
FSAMPLE,fpautSound)==(unsigned)(BUFFER-TIME-cut)*F-SAMPLE);

else if(ferror(fpOutSound) !=0)
ExitOnErrorC"Error encountered writing output acoustic data');

else ExitOnError('Unknown error handling acoustic output file.");
1/* else if *
return(0)

/***END putOutput ***

*FUNCTION: dlumpSpectrum()

*This function handles dumps the signal power spectrum (if selected).

*Arguments: pwrSpectrum

*Return value: 0

*Functions called: ExitOnError()

*Definitions caLLed: ANSI UNIX
*F SAMPLE FFT LENGTH

*Global variables called: none

*Significant memory allocation: none

if defined (ANSI
int dumpSpectrum C float *pwrSpectrum
#eLif defined CUNIX)
dumpSpectrum CpwrSpectrum)
float *pwrSpect rum;
Oendi f

mnt i;
static fLoat sequence=1.0;
char fiLeName[121, wode[2J;
static FILE *fp;

59

if(firsteuffer)

if (ASCII==ON)

mode[0=w;
mode[13=t';

1/* if */
else if (BINARYON)

modet0)='w';

1/* else if */

printf("Enter file name for output SPECTRUM data:)

if((scanfC'%s", fiLeName))EOF)
ExitOnError('FataL error in scanfo');

printfl2'\n\n");

if ((fpfopen(fiLeName, mode)) ==NULL)
ExitOnError("Error opening OUTPUT SPECTRUM data file.");

printf('SeLect output format: \n");
printf(" Enter 0 for MATLAB compatible outputAn");
printf(" Enter 1 for GRAFTOOL compatible output.\n");

ExitanError("FataL error in scanfo");
if((i !=0) && 0(i 1)) ExitOnError("InvaLid output selection");

1/* if */

if (ASCII==ON)

if(firstBuffer && format==1)

fprintf(fp,'0)
for 0=1, i<=FFTLENGTH/2; i++)

fprintf(fp,'%e ",(fLoat)(i-l)*F SAMPLE/FFT LENGTH);
fprintf(fp,"\n");

1 * if */

if (format==1) fprintf~fp,'%e %sequence);

for (i=1;i<=FFTLENGTH/2; i++)
fprintf(fp,"%e ", pwrSpectrum(1));

fprintf(fp,'\n ");
sequence~sequence+1 .0;

1/* if */
else if (BINARY==ON)

if(fwrite((char*)(pwrSpectrumt+),sizeof(fLoat),FFTLENGTH/2,fp)==
(unsigned)FFT_LENGTHI2) ;

else if(ferror(fpOutSound) !=0)
ExitOnError("Error encountered writing output SPECTRUM data");

else ExitOnError("Unknown error handling acoustic SPECTRUM file.");
) /* else if *
return(0)

/***AA end dumpSpectrum ***

*FUNCTION: processTiLtC)

* This function handles all array tilt data. It calculates the X, Y, Z
* coordinates of each hydrophone as a function of time. The coordinate
* system is oriented such that X points toward the signal "origin" &nd
* Z points down.

60

*Arguments: x[fll y[:IN

*Return value: 0

*Functions called: ExitOnError() matrix()
* vector() free matrix()

*Definitions called: ANSI UNIX
*DELTA R LOWER SENSOR
*RADIAN CHANNELS
*LOOK DIRECTION OFFSET
* TILT IEJFFER

*Global variables called: LastMinute

*Significant memory allocation: xx[)EJ yyflE]
*zzE3f) tiLtE]
*anglE udepthE)
* LdepthE)

#if defined (ANSI
mnt processTiLt(fLoat **x, float **y, float **z)
#eLif defined (UNIX
processTi Lt(x,y,z'
float **x, **y, **z;
Nendif

{ n ,j oEF

float *tiLt, *angLe, *udepth, *Ldepth, **xx, **yy, **zz, theta;
char fiLeName[123;
FILE *fpl, *fp2;

/* Open Data Files *
printf("Enter file name for upper tilt sensor data:)

if((scanf('-.s", fiLeName))==EOF)
ExitOnError("FataL error in scanfo');

printfC"\n\n");

if ((fplfopen(fiLeNaie, "rt")) == NULL)

ExitOnError("Error opening UPPER TILT data file.");

if (LOWER SENSOR==ON)

printf("Enter file name for Lower tilt sensor data:)

if((scanf('%s", fiLeName))=:EOF)
ExitOnError('FataL error in scanfo");

printf('\n\n');

if ((fp2=fopen(fiLeName, "rt")) == NULL)
ExitOnErrorC"Error opening LOWJER TILT data file.");

Ldepth=(f Loat*)vector(TILT BUFFER);
/ * if */

/* Memory Allocation *
ti Lt=(fLoat*)vector(TILT.BUFFER);
angLe=(fLoat*)vector(TILT -BUFFER);
udepth=(fLoat*)vector(TILT.BUFFER);
xx=(fLoatt*)matrix(CHANNELS, TILTBUFFER);
yy=(fLoat**)matrix(CHANNELS, TILT_BUFFER);-
2Z=(fLoat**)matrlx(CHANNELS, TILT-BUFFER);

i=1; /* read upper tilt data *

61

notEOF=1;
whi Le(notEOF)

if(fscanf(fpl,'%g %g %g\n",&tiLtti),&angLei3,gudepth~i)) EOF) i++;
else notEOF=O;

if (LOIWER-SENSOR==ON)

j1l; /* read Lower tilt data *
notEOF=l;
whi Le(notEOF)

if(fscanf(fp2, '"%g\n",&Ldepth~j)! EOF) j++;
else notEOF=O;
/ * while */

if (i<=j) LastMinute=i-1;
else LostMinutej-1;

else Lastminutei-1;

/************This is the assumed array geometry: LINEAR****A******/
for (j~l; j<=CHANNELS;- i++)

for 0=1; i<=LastMinute; i++)

xx[j)Ei)=DELTAR*(fLoat)(j-1)*cos(angLeti)/RADIAN)*
sin(ti Lt~i]/RADIAN);

yy~j][Cd=OELTAR*(float)(j-1)*sin(angle~i)/RADIAN)*
sin(tiL tfi)IRADIAN);

zz~j]Ci)=DELTAR*(fLoat)(j-l)*cos(tiLt~i]/RADIAN)+
OFFSET*cos(ti Ltfi]/RADIAN)+udepth[i];

/ * for *
/ * for *

theta=(360.O-LOOKDIRECTION)/RADIAN; ft coordinate rotation *
for (j~l; j<=CHANNELS;- j++)

for 0i=1;- i<=LastMinute; i++) /* points x into signal *

x~j3Ei3r=xx~j)Ei)*cos(theta)-yy[jJ[i]*sin(theta);
ycjjrijxxcj)Ei)*sin(theta)+yycjJ3[i]*cos(theta);-
zEjJ[i):zz~j]E,);
/*f for *

1 * for */

ft Memory Dea~location *
if (LOWERSENSOR==ON) freeC(char*)Ldepth);
free((char*)ti It);

free((char*)angLe);-
free((char*)udepth);
free hlatrix(xx, CHANNELS);
free matrix(yy, CHANNELS);
free matrix(zz, CHANNELS);
fcLose(fpl);
if (LOWERSENSOR==ON) fcLose~fp2);
return(07);

/***END processTiLt ***

*FLINCT:ON: processModes()

* This function handles the normal mode data. It calculates hydrophone
* weights and group speed. The user must insure that the depth vector
* and eigenfunction vector are of equal Length.

62

*Arguments: zE)3:3 weight[])
*~Pt rC

*Return value: 0

*Functions called: vector() ExitOnError()
* INTERPOLATEC) dydx()

*Definitions called: ANSI UNIX
*PI SSPLENGTH
*EIGVALLENGTH ORDER
*CHANNELS FCARRIER

*GLobal variabLes called: Minute

*Significant memory aLLocation: depth:) Zn!:)
* OnOff!:) WE]
*Kr!:) dlwdK

#if defined (ANSI
int processModles(fLoat **z, float *weight, float *ptrC)
#eLif defined (UNIX)
processModes(z,weight ,ptrC)
float **z, *weight, *ptrC;
#endif

mnt i, j, ptsEigVaL, set, notEOF, dleadlPhones, weightNotAssigned;
static mnt ptsEigFun;
float *w, *Kr, *dwdK, err;
static float depthESSPLENGTH+13, Zn!:SSPLENGTH+13, OnOff!:CHANNELS+1);
char key, fiLeName:12);
FILE *fpl, *fp2;

ifCf i rst~uffer==l)

w=(f Loat*)vector(EI3VAL-LENGTH);
Kr=CfLoat*)vector(EIGVALLENGTH);
dwdK=(fLoat*)viector(EIGVALLENGTH);

printf('Enter file name for normaL mode data (eigenfunction):)

if((scanf('%s", fiLeName))==EOF)
ExitOnError("FataL error in scanf());

printfC'\n\n") '

if ((fpl=fopen~fiLeName, "rt")) == NULL)
ExitOnErrorC"Error opening NORMAL MODE data file (eigenfunction)");

printf("Enter file name for normal mode data (eigenvaLues): ;

if((scanf("%s", fiLeName))==EOF)
ExitOnError('FataL error in scanfo");

printf("\n\n");

if ((fp2=fopen(fiLeName, "rt")) == NULL)
ExitonError("Error opening NORMAL MODE data file (eigenvaLues).');

i=1; /* read normal mode data *
not EOF ~1;
whi te(notEOF)

if(fscanf~fpl, '%g %g \n", &dlepth~i), Zn!i)) EOF) i++;
else notEOF=O;

63

ptsEigFunzi-1;

for(iP1; i<ptsEigFun;i++) depthtildepth~ij+CTD OFFSET;

notEOF=1;
whi Le(notEOF)

if(fscanf(fp2, "%g %g \n", Mwil, &Kr~iD ! EOF) i++;
else notEOF=O;

ptsEigVati-1;

tar (i1l;i<CHANNELS;i++) OnOff~iJ=1.O;

printf("Do you want to turn off any hydrophones?)

if((scanfC'%s",&key))==EOF)
ExitOnError("Fata. error in scanfo");

if(key=='y : key-Y')

printf(\nHow many hydrophones must be secured?)

if((scanfC(%i", &deadPhones))==EDF)
ExitOnError("Fatat error in scanfo");

for(i=l; i<=deadPhones; i++)

printf("\nEnter hydrophone number to secure:)

if((scanf(%i", &Q))=EOF)
ExitOnError("FataL error in scanfo");

if (j>CHANNELS :1j<l)
ExitOnError("Bad hydrophone identification");

OnOff~j3=O.O;-
/ * for *

)/* if *
/ * if */

{o~~~<Lstiuei+

if(depth~ptsEigpun)<ZrCHANNELSE[i)

printf("Max elgenfunction depth is: %'f\n,depthtptsEigFunJ);
printf("at depthE) index of: %i\n",ptsEigFun);
printf("Max depth of phone number %i is: %f\n\n",

CHANNELS, ZfCHANNELSJ il);
ExitOnError("FataL data set error");

1/* if *
1/* for *

j1l;
for 0=~1; i<=CHANNELS; i++)

weightNotAssigned'l;
while (j<=ptsEigFun && weightNotAssigned)

if(zMiCMinutel<O.O : depth~j)<O.O)

printf Ci=%Ii \n", i);
printf ('j=%i\n",j
printf('Minute=%i\n ,Minute);-
printf("z~i][Minute) is: %T\n", zEMinute));
printf("depth~j] is: %I\n",depthj);
printf("Depth Less than zero encountered in processP~odes.");
printf('\n\n');

64

ExitOnError("Check input depths for coordinate orientation");
} * if */

if(depth~j]<z~i3[Minute) U& depthlj+l)>ziEllinute)

set=WRDER+1)/2;
INTERPOLATE(gdepthtj-set], £Zn~j-setJ, ORDER+l, z~iJEminutel,

Sweight~i3, &err);
wel ghtNotAss igned=O;
/ * if '

/ * whiI~e

)/* for */

for (1=1; i<=CHANNELS; i++) weight~i3=OnOff~i]*weighti3;

if (Minute==l)

dydx(Kr,w~dwdK, ptsEigVaL);
for (,1l;i<=ptsEigVaI;i++)

if (w~i)<2.O)*PI*F CARRIER &9 w~i+1)>2.0*PI*F CARRIER)

sets (ORDER+1)/2;
INTERPOLATE(&w~i-set),&dwdK~i-set),ORDER+l,

2.0*PI*FCARRIER ,ptrC,&err);
/ * if *

1/* for */

freeC (char*)w);
free(Cchar*)Kr);
freeC(char*)dwdK);

1/* if */
return(0)

/**t** END processModles ***

*FUNCTION: dlydlx(

*This function estimates derivatives.

*Arguments: xE) YE]
*ddx[J points

*Return value: 0

*Functions called: ExitOnError()

*Definitions called: ANSI UNIX
* STEP

*GLobal variables called: none

*Significant memory allocation: none

#if defined (ANSI
mnt dydx(fLoat *x, float *y, float *ddx, mnt points)
Weif defined (UNIX
dydx~x,y,ddx,points)
float *x, *y, *ddx;
int points;
#endif

int n;-

65

for (n1l;n<=points;n++)

if ((n>=STEP) && (n-points-STEM) /*center*/
ddx~n)=(y~n+STEP)-y~n-STEP) (x~n+STEP)-xtn-STEPJ);

else if (n<STEP) /*beginning*/
ddx~n)=(y~n+STEP3-yr1 3) /(xtn+STEP)-x[l 3);

else if (n>points-STEP) /*end*/
ddx~n)=(ylpoints3-yln-STEP))/(xlpoints)-xtn-STEP3);

eLse
ExitOnErrorC"lndex error in dydx'); /* sanity check *

/ * for *
return(0)

I***END dydx ***

*FUNCTION: poLint()

*This function performs polynomial interpolation.

*Arguments: xaE] yao)
*n x
*y dy

*Return value: 0

*Functions caLLed: vector() ExitOnError()

*Definitions called: ANSI UNIX

*Global variables called: none

*Significant memory allocation: d[) crJ

if defined (ANSI
int poLint(float *xa, float *ya, mnt n, fLoat x, float *y, float *dy)
Weif defined (UNIX)
poLint(xa,ya,n, x,y,dy)
float *xa, *ya, x, *y, *dy;
mnt n;
#endif

mnt i, m, nsl;
float den, dif, dift, ho, hp, w;
float *c, *d;

diftfabs(x-xa~l])

c=(fLoat*)vector(n);
d=(fLoat*)vector(n);

for 0=1; i<=n;- i++)

if ((dift=fabs(x-xaril)) < dif)

nsi;
dif'~dift;

)/* if *

d~ijya~l);

/ * for */
*y--ya[ns--);
for (m1l; m<n; m++)

66

for 0=1; i<n-n; i++)

ho-xa~i)-x;
hp=xa~i+m)-x;
wci+1J-dli);
if ((denho-hp)==O.O)

ExitOnError("Error in routine POLINT");
den=w/den;
d~l)hp*den;
Ci)ho*den;

I /* for *1
*+= (*dy=-(2*ns < (n-rn) ? c~ns+13 d~ns--]));

1/* for */
free((char*)d);
free((char*)c);
return(0)

/***END potint */

*FUNCTION: windlow()

*This function applies a Blackman window to a vector.

*Arguments: data[] N

*Return value: 0

*Functions called: none

*Definitions calledl: ANSI UNIX
* P1

*Global variables called: none

*Significant memory allocation: none

Wi defined (ANSI
mnt windlow(fLoat *dlata, mnt N);
Weif defined (UNIX
windlow(data, N
float *data;
int N;
#endif

int n;

for (n=0; n<N; n++)

data~n+l)~datatn+lJ*C0.42+0.5*cos(2.O)*Pl*(fLoat)(n-N/2)/(fLoat)(N-1))
+0.O8*cos(4.0*Pl*(fLoat)(n-N/2)/(ftoat)(N-1)));

1/* for */
return (0)

Send window ***

*FUNCTION: reaLfto)

*This function calculates FFT's

*Arguments: data[] n
* is gn

*Return value: 0

67

*Functions called: fourM(

*Definitions called: ANSI UNIX

*Global variables called: none

*Significant memory allocation: none

Oil defined (ANSI
int reaLft(fLoat *data, int n, int isign)
OeLif defined (UNIX)
reaLft(data, n, isign)
float *data;
int n, isign;
Oendi f

mnt i, il, i2, i3, i4, n2p3;
float c1=0.5, c2, hir, hli, h2r, h2i;
double wr, wi, wpr, wpi, wtemp, theta;

theta=3. 141592653589793/(doubLe)l,
if (isign==1)

c2 =-0.5;
fourl(data, n, 1);

else

c2=0. 5
theta -theta;

1/* else */
wtempsin(0. 5*theta);
wpr = -2.O*wtemp*wtemp;
wpi~s-n(theta);
wril. +wpr;
wiwp
n2p3 2*r+3;
for ,i=2,- i=n/2; i++)

hlrc1*Cdataf,1)+datafi3J);
hi i=c1*(data~i2)-data[i43);
h2r = c2*(datati2)+datai43);
h21=c2*(dataE11-datai3);
data(ii =hl r+wr*h2r-wi*h2i;
datat,23=hl i+wr*h2i+wi*h2r;
data~ i3)=h1 r-wr*h2r+w1*h2i;
dataE,1.J = -hii+wr*h21+wi*h2r;
wr=(wtemp~wr)*wpr-wi*wpi+wr;
wiwi*wpr+wtemfp*wpi+wi,

I/for */
if 'IsIgn==1)

data(1]=(h rdata[1D))datat2);
data[23=hlr-datat2];

I/* if *

data[23=c1*(h1 r-datat21);
fourl(data^n-1);

3/* else *
return C 0)

/**tt- end reaLft ***

68

lk FUNCTION: fourl()

It This function CalcuLates FFT's

*Arguments: data[] nnl
* isign

*Return vaLue: 0

*Functions called: none

*Definitions caled: ANSI UNIX
* SWAP

*Global variables called: none

*Significant memory alocation: none

#if defined (ANSI
int fourl(ftoat *dlata, mnt nn, int isign)
Weif defined (UNIX)
fourl(dlata, nn, isign)
float *dlata;
mnt nn, isign;-
#endif

mnt n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
fLoat tempr, tempi;

nnn << 1;
j=1;
for 0=~1; i<n; i+=2)

if (j > 1)

SWAP(datal,datali));
SWAP(data[p)1,datati+lJ);

1 * for *
mn >> 1;
whiLe (m >= 2 && j> m

j - M

1/* while *

/*f for *
mmax=2;
whiLe (n > mmax)

i st ep=2*mmax;
theta=6 .28318530717959/(isign*mmax);
wtempsin(0. 5*theta);
wpr = -2.0*wtemp*wtemp;
wp ~s in Ctheta)l
wr=1 .0;
wi=0.0;
for (m=l; m<mmax; m+=2)

for (im; i<=n; 1+=istep)

j i +mmax;
tempr=wr*datal)wi*data~j+lU;
tempi=wr*dataCj41)+wi*data~j3;
datarj)=data~i)-tempr;
data[j.13=clatari+ll-tempi;
data~i) += tempr;

69

data[is2 +l tempi;
} /* for */
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

) /* for */
mmax=istep;

) I* while */
return (0);

I**** end four1 ***r*/

FUNCTION: vector()
*

* This function allocates memory for UNIT OFFSET vectors.

* Arguments: Length

Return value: *v

Functions called: ExitOnError()

* Definitions called: ANSI UNIX

* Global variables called: none

* Significant memory allocation: v3

if defined (ANSI
float *vector(int length)
#elif defined (UNIX
vector(length)
int Length;
#endlf
(

float *v;

if ((v=(float*)malloc((length+l)*sizeof(float))):=NULL)
ExitOnError("Memory allocation failure in vectoro).");

#if defined (ANSI
return v;

Nelif defined (UNIX
return (long int)v;

#endif

/***t* END vector ***/
/*************I

* FUNCTION: matrixo)

* This function allocates memory for UNIT OFFSET 2-0 arrays.

* Arguments: row col

* Return value: *nM

* Functions called: ExitOnError()

* Definitions called: ANSI UNIX

* Global variables called: none

* Significant memory allocation: m[]

if defined (ANSI
float **matrix(int row, int col)

70

#eif defined (UNIX
matrix(row, coL)
int row, col;
#endif
{

int i;
fLoat **m;

if ((m(float**)maLLoc((unsigned)(row+l)*sizeof(float*)))==NULL)
ExitOnError("Allocation faiLure 1 in matrixo");

for (i=1; i<=row; i++)
{

if ((m[i]=(fLoat*)malLoc((unsigned)(coL+1)*sizeof(ftoat)))=:NULL)
ExitOnError("AlLocation faiLure 2 in matrixo");

/ /* for */
#if defined (ANSI

return m;
#elif defined (UNIX

return (Long int)m;
#endif

/***** END matrix ****/

* FUNCTION: freematrix()

* This function deallocates memory from UNIT OFFSET 2-D arrays.

* Arguments: m[] row

* Return value: 0

* Functions called: none
*

* Definitions called: ANSI UNIX
,

* GLobal variables called: none

* Significant memory allocation: none

***** /

#if defined (ANSI

void free matrix(float **m, int row)

#elif defined (UNIX
free matrix(m, row)
float **m;
int row;
#endif
{

int i;

for(i=row; i>=I; i--)
free((char*)m[i]);

free((char*)m);

return(0);

/***** END free matrix *****/

**********-********/

* FUNCTION: ExitOnError()

* This function performs an abnormal process termination.

* Arguments: error txt[]

* Return value: none

* Functions called: none

71

Weif defined (UNIX
atrix(row, coL.)
int row, coL;
#endif

int i;
float **m;

if ((m=(float**)ma. oc((unsigned)(row+1)*sizeof(fioat*)))==NULL)
ExitOnError("Allocation failure 1 in matrixo");,

for (0=1; i<~row; i++)

if ((m~il)(fLoat*)maLLoc((unsigned)(coL+1)*sizeof(fLoat)))==NULL)
ExitOnError("ALLocation failure 2 in matrixo');

)/* for */
iW defined (ANSI
return m;

Weif defined (UNIX
return (Long int)m;

#endif

/***END matrix ***

*FUNCTION: free matnix()

*This function dleallocates memory from UNIT OFFSET 2-D arrays.

*Arguments: m1313 row

*Return value: 0

*Functions called: none

*Definitions called: ANSI UNIX

*Global variables called: none

*Significant memory allocation: none

#if defined (ANSI
void free matrix(fLoat **m, int row)
NeLif dlefilned (UNIX
free matrix(m, row)
float **m;
mnt row;
#endif

mnt i;

f ree ((Cchar) mE,);
I ree C Cchar*)m);
return(0)

/***END free matrix ***

*FUNCTION: ExitOnError()

*This function performs an abnormal process termination.

*Arguments: error txt[)

*Return value: none

*Functions called: none

71

if((c==CO
M
MA) :: (c==COLON)) c=SPACE;

fputc(c, outfp);
} /* while */

} /* if */
else ExitOnError("Error opening output data file");

) /* if */
else ExitOnError("Error opening input data file");
fcLose(sacmfp);
fcLose(out fp);

exit(O);

#if (VERSION==ANSI)
void ExitOnError(char error txt[])
#elif (VERSION:=UNIX)
ExitOnError(error-txt)
char error txt[];
Oendif
{

fprintf(stderr,"Program run-time error ...\n");
fprintf(stderr,"%s\n",errortxt);
fprintf(stderr,"...now exiting to system...n");
exit(1);

}

C. SACM1.C

This program reads the data output by the upper tilt

sensor and formats it for use in the beamformer. It

calculates 60 second averages for all data fields, converts

pressure to depth and calculates tilt direction based on

current velocity.

* PROGRAM SACMI1.C vsn 1.0
* WRITTEN BY: Steven Crocker
* LAST UPDATE: August 6, 1991

* This program takes SACM data from the Heard Island West Coast
* Array (upper instrument package) and condenses it.

* Pressure is converted to depth.

* The conductivity is not processed. ALL values output are 60
* second averages of the input.

#define VERSICN ANSI /* either ANSI or UNIX */
#define SELECT OUTPUT OFF /* ON or OFF */
#define C 25 /* max length for file names */
#define inBUFFER 1200 /* input buffer size */
#define outBUFFER 50 /* output buffer size */
#define PI 3.14159265359
#define RADIAN 57.2957795131

#include<stdio.h>

73

Oinctude <aaL~oc.h>
OincLude<math.h>

#if (VERSIO*4==ANSI)
#incLud~e<stdLib.h>
void ExjtOnError(char error txtt]);
Xetndif

FILE *sacm-fp, *outfp;

char c, sacm-fiteC], out fite[C];

int i, j, count, Loop count, inBUFFER fuLL, out flag[63;

float t1, avgTi It, avgPress, avgVN, avgVE, avgTemp, avgAngLe,
avgVeLocity, junk;

static float inTi~t~inBUFFER], inPress~inBUFFER], inVN~inBUFFER3,
inVE~inBUFFER], inTimetinBUFFER], inTemp~inBUFFER],
outTime~outBUFFER), outTi It~outBUFFER),
outPresstoutBUFFER], outAngceoutBUFFER),
outVeLocitytoutBUFFER), outTemp~outBUFFER);

printf("\n\n\nEnter file name for SACM data\n");
scanf('%s",sacmtfi I);
printf("\n\n"),
printf("Enter file name for output\n");
scanf("%s",outfi I);
printf("\n");
printf (The foLLowing pertains to output file format.\n\n');-

printf("Units of measure: Time index is minutes.\n");
printf(" Angles in degrees\n");
printf(" Compass direction (TRUE)n");
printf(" Velocity in meters/second\n");
printf(" Temperature in degrees C\n");
printf(" Depth in reters~n"n);
printf(INOTE: Output column order is same as above.\n\n\n");

for (i=Oi<6;i++) out fLag~i3=1;5

Wi (SELECTOUTPUT==ON)
printf("IncLude TIME? (y or n)\n");
scant("W',Ic;
if(c==89 c==121) out fLag[O)=1;
else Out_fLagtO)=O;
printf("\n\n");

printt("IncLude TILT? (y or n)\n");
scanf("%s",gc);
if(c==89 ::c==121) out fLag[1)=1;
else out fLag[13)0;
printf("\n\n");

printf("IncLude CURRENT DIRECTION? (y or n)\n");
scanf("%s",&c);
if(c==89 ;:c==121) out f~agE23=1;
else out tLag[2)=0;
printf(Wn"n);

printf("IncLude CURRENT VELOCITY? (y or n)\n");
scanf('%s",9c);
if(c89 :: c==121) out-ftag[3)=1;
else out fLagE3=O;
printf("\n\n');-

printf("IncLude TEMPERATURE? (y or n)\n');

74

scan? ('%s",Ic);
if(c==89 ::c=121) out fLag(43=1;
else out fLagI4)=0;
printf(Q\n\n");

printf("IncLude DEPTH? (y or n)\n");
scanfC(%s",&c);
if(c==89 ::c=121) out fLag[5)=1;
else out...Lag53=O;
Oendif

inSUFFER-fuILinBUFFER;
Loop count=O;

if ((sacm fp=fopen(sacm file, "rt")) NULL)
else Exit~nError('Error opening input data file");
if ((out fpmfopen(out fiLe, "wt")) !=NULL);
else ExitOnErrorC"Error opening oujtput data file");

while (1)

for (i=O;i<inBUFFER;i++)

if (fscanf(sacmfp, "%f %f *%f %f %'f %f %'f\n",
&inTimefi),&,nVNi, &inVE~i], &inTempil,
LinT, tli, &inPressEJ, &junk) EOF);

else inSUFFER fuLLi-2;
/ * for *

j=0;
for (,0O;i<inBUFFERfuLL;i++)

tl1inTime[i];
avgTi Lt=0.0;
avgPress=0.0;
avgVN=0.0;
avgVEO0.0;
avgTemp=0.0;
count =0;-
whiLe(C(inTime~il<tl+60.O) &9 (i~inSUFFER full)

avgTiLtavgTiLt + inTiLt[il/10.0;
avgPressavgPress + inPress~iJ*l1OO;
avgVN=avgVN + inVN~i)/1000.0;
avgVE=avgVE + inVE~i)/1000.0;
avgTempavgTemp + inTemptiJ/10O.0;-

count++;
1/* while */

avgTi Lt=av#gTi It/(f Loat)count;
avgPressavgPress/(f loat)count;
avgTempavgTemp/ (float) count;
avgVNavgVN/(f Loat)count;
avgVE=avgVE/(fLoat)count;
avgVeLoci ty-sqrt (avgVN*avgVN+avgVE*avgVE);
avgAngLeatan2(avgVE, avgVN)*RADIAN;
if (avgAngLe<=0.0) avgAngLe=360.O+avgAngLe;
outTime~j)=(fLoat)Cj.1).outBUFFER*Loop count;
outTi Lt[jlavgri It;
out Press~j)=(avgPress-1O1325,O)/(9.80665*1O26.0);
outTemp~j)=avgTemnp;
outVeLocity~j)avgVeLocity;
outAngLej)=avgAngl;

1/* for *

if (inBUFFER-fuL(1 inBU7FER) j--;
for (0;,i<j;i++)

if (out fLag[0l) fprintf(out fp, "%6.0f", outTimeti));

7 5

if (out fLag[13) fprintf(out_fp, " %8-5f", outTiLt~il);
if (out fLagE23) fpri-tf(out_fp, "%8.3f", outAngLeil);
if (out fLag[33) fprintf(outfp, " %8.6f", outVeLocityi);
if (out fLagC4)) fprintf(outfp, " %8.5f", outTemp~i));
if (Out_fLag[5]) fprintf(outfp, " %8.Of", outPressi3);
fprintf(outfp, 11\n");

/ * for */

if (inBUFFER fuLL ! inBUFFER) exit(O);
Loop count++;

1/* whiLe *
exit(l);

#if (VERSION==ANSI)
void ExitOnError(char error-txt)
NeLif (VERSION==UNIX)
Exi tOn~rror(error-txt)
char error_txtE);
#endif

fprintf(stderr,'Program run-time error..\n)
fprintf(stderr,"%s\n",errortxt);
fprintf~stderr,"..now exiting to system ... n)
exit (1),

D. SACM2. C

This program takes the output of sacrnl.c as input. it

locates and copies a user defined subset of the tilt data for

use in beamforming.

*PROGRAM SACM2.C vsn 1.0
*WRITTEN BY: Steven Crocker
* LAST UPDATE: August 6, 1991

*This program takes data processed by SACM1.C and cuts
*a user defined segment from it. The segment is retained
*as the output data file. The input file is not affected.
*The output time base may either be normaLized to 1 or may
*retain the original values.

*The option is given to accept a default output format. This
*output format coincides with the required input format to the
*time domain modal beamformer.

*The output elements are selectable if desired.

#define VERSION ANSI /* either ANSI or UNIX *
#define C 25 1* max Length for file names *
NincLude<stdio.h>
#incLude <maloch>

#if (VERSION==ANSI)
NincLude~stdt ib. h>
void ExitOnError(char error txtC]);
Oendif

76

main()

FILE *input fp, *outfp;
char c, Default, input_fiLe[C), out_file[C);
int i=O, outi, outN, out fLag[73;
float Tilt, Depth, Time, Temp, Angle, Velocity;

printf('\n\n\nEnter file name for input dlata.\n");
scanf("%s",input file);

if ((input fp=fopen(input file, "rt")) !=NULL)
else ExitOnError("Error opening input file");
printf("\n\n");

printf("Enter fiLe name for output.\n");
scanf("%s",out file);

if ((out fp~fopen(out file, "wt")) !=NULL)
else ExitOnError("Error opening output fiLe");

printf('\n\n\nDo you want the dlefault output configuration?\n'l);
printf("This option formats the output for use in the beamformer\n");
scanf("%s",DefauLt);
printf("\n");
ifCDefault ! n' && Default ! N')

printfC"The following pertains to output file format.\n\n");
printf("Units of measure: Time Index is minutes\n");
printf(" Angles in degrees\n');
printf(" Compass direction (TRUE)\n");
printf(" Velocity in meters/second\n");
printf(" Temperature in degrees C\n');
printf(" Depth in meters\n\n");
printf('NOTE: Output column order is same as above.\n\n\n');

printf('IncLude TIME? (y or n)\n");
scarf ("/.s c);
if(c89 2c=121) out-flag[0O)1;
else out fLagEO)=O;-
printf("\n\n');

printf(' Include TILT? (y or n)\n');
scanf("%s",c);
if(c==89 ::c=121) out-fLag[13]1;
else out fLagtl)=O;
printf(\ n\n");

printf("IncLude CURRENT DIRECTION? (y or nn)

if~c==89 ::c==121) Out-flag[2Jl;-
else out fLag[23=0;
printf('\n\n');

printf('IncLude CURRENT SPEED? (y or n)\n");
scanfC'%s",c);
if(c==89 ::c==121) out-f Lag[3J1;
else out fLag[3)=0;
printf("\n\n");

printfl2'IncLude TEMPERATURE? (y or n)\n");
scarf('%s",c);-
if(c89 ::c =121) outf Lag[4]=1;
else out fLag[4)=0O;
printf("\n\n");

printf('IncLude DEPTH? (y or n)\n");
scan f ('.s,c);
if(c==89 ::c-121) out-f LagE53=1;
else out Ilag[53=0,

/ * if *

77

else

outf Lag[3=O;
out-fltag[13=1;
out-fLagE2)=1;
out ttag[33=O;
out-f agr43=O;
outfLag E5]=1;

/ * eLse */

printf(C\n\nWhat time index of the input fiLe should be the first\n");
printf("eLement of the output fiLe?\n");
scant (%i",9outl);-
printf("\n\n");

printf('How many eLements shouLd the output file contain?\n");
scanf('%V',IoutN);
printt("\n\n");

if (DefauLt !In, U Default !=)

printf('ShouLd the time base be normatized to begin at t=1?\n");
scanf C'%s, c);
if(c==89 ::c==121) out f~ag[6)=1;
else out fLag[6)=O;
printf(\ n\n\n");

/ * if */

whiLe (1)

if (fscanf(inputfp, "%f %f %f %f %f %.f \n",
&Time, &TiLt, &AngLe, &VeLocity, &Temp, &Depth) !=EOF)

ifC(Time >= (fLoat)outl) U& (Time < (fLoat)(outl+outN))

Mfourtflag[Q] U 'out fLag16J)
fprintf(outfp,"%f", Time);

eLse if (out -fLag[O) U& out fLagt6)
fprintf(outfp, "%f", (foat)(i+1));

if (out fLag[1)) fprintf(outfp, " %f", TiLt);
if (out fLag[2)) fprintf(outfp, " %f", Angle);
if (out fLag[3]) fprintf(outfp, " %f", Velocity);
if (out fLag[4)) fprintf(autfp, " %f", Temp);
if (out fLag[5]) fprintf(outfp, " %f", Depth);
fprintf(outfp, "\n");

1/* if *1
else if(Time >= (fLoat)(outl+outN))

fcLose(inputfp);
fctose(outfp);
exit (0)

/ * else if *
I/* if *

else

fcLose(input fp);
fc Lose(outfp);
ExitOnError(CEOF encountered in input data fiLe");

) f else *
}/* while *
exit ('),

#if (VERSION==ANSI)
void ExitOnError(char error txtl)
#eLit (VERSION==UNIX)
ExitOnError~error-txt)

7 8

char error txto);
#endif

fprintf (stderr, 'Program run-time error..\n)
fprintf(stderr,"%s\n",errortxt);
fprintf(stderr,'...now exiting to system ... n)
exit (1);

E. ARRAYTEST.C

This program performs various statistical tests on each

element of the acoustic array. It is useful for isolating

hydrophones which have failed during the experiment. The

statistical tests are an adaptation of those found in

Reference 11.

* PROGRAM: ARRAYTST vsn 1.0
* WRITTEN BY: Steven Crocker
* LAST UPDATE: October 21, 1991

#define UNIX VERSION /* either ANSI or UNIX *
#define CHANNELS 32 /* number of hydrophones on array *
#define FSAMPLE 228 /* sampling frequency *
#define BUFFERTIME 60 /* duration of time averages *

#incLude<stdio.h>
#incLude<mailoch>
#incLude~math. h>

#if defined (ANSI
#incLude<fLoat .h>
#incLude<stdLib.h>
int getinput~void);
int moments(fLoat *data, mnt n, float *ave, float *ave2, float *adev,

float *sdev, float *svar, float *skew, float *curt)
float *vector(int Length);
float **matrix(int rob., int coL);
int free -matrixC float **m, mnt row);
void ExitOnError(char error_txtl);
#eLif defined (UNIX
mnt vectoro,

inatrixc C,
getlnputo),

momentso,
free matrixo
Exit~nErroro;-

#endif

/* Global Variable Declarations *
float **inSOUND,
mnt firstBuffer~l;

maino)

mnt i, j=1, k, fLag[8J;

79

float ave, ave2, adev, sdev, svar, skew, curt, *temp;
char fiLeNameEBO), key;-
FILE *fpl, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7;

inSOUND=(fLoat **)matrix(CHANNELS, BUFFER TIME*F SAMPLE);
temp=(f bat *)vector(BUFFER TIME*F SAMPLE);

for (i0O;i<=7;i++) fLag~i]=O;
printf("Answer y or n to the following output options.\n");
printf("Average vaLue (over %i seconds) ,BUFFERTIME);

scanf("%s", Skey);
if(key--89 ::key--121)

fLag(1)=1;
printf("Enter file name:)

sconf(2Xs", fiLeName);
printf('\n\n");
if ((fpl=fopen(fiLeName, llwt")) == NULL)

ExitOnError("Error opening fiLe. *);
1/* if */

printf("Mean squared vaLue (over %~i seconds): 8 UFFER_TIME);
scanfC"%s", &key);
if(key--=89 ::key=121)

fLagt2)=1;
printf("Enter file name:)

scanf("%s", f, LeName);-
printf("\n\n");
if ((p2=fopen(fileNaie, "wt")) == NULL)

ExitOnErrorC"Error opening fiLe.");
) * if *

printf("Average deviation (over %i seconds): S UFFERTIME);
scanf("%s", &key);
if(key==89 ::key==121)

fLag[3]=1;
printf("Enter fiLe name: I');
scanf("%s", fileName);
printf('\n\n");-
if ((fp3=fopen(fiLeName, "wt")) ==NULL)

ExitOnErrorC"Error opening file.");
/ * if */

printf("Standard deviation (over %i seconds) ,BUFFERTIME);

scanf("%s", &key);
if(key==89 ::key=121)

f 1agE411
printf("Enter file name:)

scanf("*/s", fileName);
printfC"\n\n");
if ((fp4=fopen(fiLeName, "wt")) == NULL)

ExitOnError("Error opening fide.");
1 * if *f

printf("Variance (over %i seconds) ,BUFFERTIME);

scanf("%s", &key);
if(key'-89 ::key==121)

f LagES)=1;
printf("Enter file name:)

scanfC"%s", fileName);
printf('\nn");
if ((fp5=fopen(fiLeName, "wt")) ==NULL)

ExitOnError("Error opening file.");
1 * if *

80

printtQ"Skewness (over %i seconds) ,BUFFERTIME);

scanf('Xs", Ikey);
if(key-89 ::key--121)

printf("Enter fte name:)
scanf("%s", fiLeName);
printfQ"\n\n");
if ((fp6=fopen(fiLeName, "wt")) == NULL)

ExitOnError("Error opening file.");
)/* if */

printf('Kurtosis (over %i seconds) ,BUFFERTIME);

scanf('Xs", Ikey);
if(key--89 ::key=-=121)

f LagE7)=l;
printf("Enter file name:)
scanf("%s", fileName);
printf("\n\n");
if ((fp7=fopen(fiLeName, "wt")) == NULL)

ExitOnError("Error opening file.");
/ * if */

while (j<120)

getlnputoC;
if (fLag~l]) fprintf(fpl,"%i",j);
if (fLag[2)) fprintf(fp2,'%i",j);
if (fLag[3J) fprintf(fp3,"%i",j);
if (fLag[4]) fprintf(fp4,"%',j);
if (fLag[5)) fprintf(fp5,"%i",j);
if (fLag[6J) fprintf(fp6,'%i",j);
if (fagE73) fprintf(fp7,"%i",j);

for (1=1;i<=CHANNELS; i++)

for(k~l;k<=BUFFERTIME*FSAMPLE;k++)
templk],inSOUNDiJ~k3;

moments(temp,BUFFERTIME*FSAIPLE,&ave,&ave2,
&adev,&sdev,&svar,&skew,9curt);

if (fagri]) fprintf(fpl, " %f ",aye);
if (fLag[2]) fprintf(fp2, "%f ",ave2);

if (fLagE3]) fprintf(fp3, " %f ",adev);
if (fLag[4]) fprintf(fp4, " %f, sdev);
if (fLag[5J) fprintf(fp5, " %f, svar);
if (fLag[6J) fprintf(fp6, " %f, skew);
if (fag[7)) fprintf(fp7, "%f ,curt);

)/* for */

if ('-q[13) fprintf(fpl,"\n");
if '!g[2)) fprintf(fp2,"\n");
if (ftagt3) fprintf(fp3,"\n");
if (fLag[4)) fprintf(fp4,"\n");
if (fagt5)) fprintf(fp5,"\n");
if (fLag[6I) fprintf(fp6,"\n"';
if (fLag[7]) fprintf(fp7,'\n");
f irst~uffer=O;
j ++;

I/* while *
exit (0);

~~ ~END main *** .'.

*FUNCTION: getlnput()

81

* This function handles all acoustic input. It also provides one of

* two normal process terminations available in the program.

* Arguments: none

* Return value: 0

Functions called: vector() ExitOnError()

* Definitions called: ANSI UNIX
, FSAMPLE CHANNELS
* BUFFERTIME

* Global variables called: inSOUNDE] firstBuffer

* Significant memory allocation: diskBuffer[]

if defined (ANSI
int getinput(void)
#elif defined (UNIX
getInput()
#endif
{

int i, j, items, buffer;
float *diskBuffer;
char fileName[80];
static FI'E *fpStatic;

if (firstBuffer)

printf("Enter file name for input acoustic data: ");

if((scanf('.s", fileName))==EOF)
ExitOnError("Fatal error in scanfo");

printf("\n\n");

if ((fpStatic=fopen(fileName, "rb")) == NULL)

ExitOnError("Error opening INPUT ACOUSTIC data file.");
} /* if *I

/* Memory Allocation *I
buffer=BUFFER TIME*F SAMPLE*CHANNELS;
diskBuffer=(fLoat*)vector(buffer),

items=fread((char*)(diskBuffer+1), sizeof(float), buffer, fpStatic);
if (items==buffer) /*continue*/;
else if(ferror(fpStatic) != 0)

ExitOnError("Error encountered while reading input acoustic data");

else if(feof(fpStatic) != 0)
{

printf("\t End of File reached: EXECUTION COMPLETE\n");

fclose(fpStatic);
exit(0);

1 /* else if */
else ExitOnFrror("Unknown error handling acoustic input file.");

for (=1; i<=BUFFER_TIME*FSAMPLE; i++)
(

for (j=l; j<=CHANNELS; j++)
inSOUND[j][i] = disk3uffer[CHANNELS*(i-1)+j);

I /* for */

/* Deallocate Memory */

82

tree((char*)disksuffer);
return(0)

/***END getInput ***

*FUNCTION: moments()

*This function calcuLates the mean, mean squared vaLue, average
*deviation, standard deviation, variance, skewness and kurtosis
*of a data vector.

*Arguments: data n
*ave ave2
*adev sdev
*svar skew
* curt

*Return value: 0

*Functions called: ExitOnError()

*Definitions called: ANSI UNIX

*Global variabLes called: none

*Significant memory allocation: none

Wf defined (ANSI
int moments(fLoat *data, it n, float *ave, float *ave2, float *adev,

float *sdevr, float *svar, float *skew, float *curt)
Weif defined (UNIX)
moments Cdata,n,ave,ave2,ade'v,sdev,sva!-,skew,curt)
int n;'
float *data, *ave, *ave2, *ade ,, *sdev,, *svar, *ske., *curt;
Nendif

int j;
float s,p;

if (n<=l) ExitOnError("n must be at least 2 in momento");-
s='0.0;
*ave2O .0;
for (]~l1;j<=n;j++)

s - data[)];
*ave2 +=data[.j)*dataj3;

) * for *
*aves/n;
*ave2 /= n;
*adev=(*svar)=(*skew)=(*curt)=0 0;
for (jzl;j<=nl-j++)

*adev - fabs(s=dataL'j]-(*ave));
*svar - (p~s*s);
*skew -~ (p s);
*curt += (p s=

1/* for */
*ad~ev /n;
*svar 1(n-1);
*sdevsqrt (*svar);-
if (*svar)

skew /= (n(*svar)*(*sdev));
*curt:C*curt)/(n*(*svar)*(*svar))-3.O;

}/* if */
else ExitOnError("No skew/kurtosis when variance 0 (in momento)");

83

return(0);

/*'**** END moment ***kl

* FUNCTION: vector()

* This function allocates memory for UNIT OFFSET vectors.

* Arguments: Length

* Return value: *v

* Functions called: ExitOnError()

* Definitions called: ANSI UNIX

* GLobaL variables called: none
*

* Significant memory allocation: vE]

if defined (ANSI
float *vector(int length)
#etif defined (UNIX
vector(Length)
int Length;
#endif
{

float *

if ((v=(fLoat*)malLoc((Length
l)*sizeOf(fLo

at))) ==NULL)

ExitOnError("Memory allocation failure in vectoro.");
il defined (ANSI
return v;

#elif defined (UNIX
return (Long int)v;

#endif} / /

/*tr** END vector ****/

* FUNCTION: matrixC)

* This function allocates memory for UNIT OFFSET 2-D arrays.

* Arguments: row coL

* Return value: *m

* Functions calLed: ExitOnError()

* Definitions called: ANSI UNIX

* Global variables called: none

* Significant memory allocation: mE[

il defined (ANSI
fLoat *tmatrix(int row, int coL)
#elif defined (UNIX
matrix(row,col)
int row, col;
#endif
C

int 1;
float **m;

84

if ((g=(float**)malLoc((unsigned)(row+1)*sizeof(float*)))==NULL)
ExitOnError("AlLocation failure 1 in matrixo");

for (i=1; i<=row; i++)
(

if ((m[i]=(float*)maLloc((unsigned)(coL+1)*sizeof(float)))==NULL)
ExitOnError("Allocation failure 2 in matrixo");

1 /* for */
#if defined (ANSI

return m;
#elif defined (UNIX

return (Long int)m;
#endif

/f*** END matrix *i***/

* FUNCTION: free matrix()

* This function deallocates memory from UNIT OFFSET 2-D arrays.

* Arguments: m[]] row

* Return value: 0

* Functions called: none

* Definitions called: ANSI UNIX

* Global variables called: none

* Significant memory allocation: none

#if defined (ANSI
void free matrix(float **m, int row)
#elif defTned (UNIX
free matrix(m, row)
float **m;
int row;
#endif
{

int i;

for(i=row; i>=I; i--)
free((char*)m[i]);

free((char*)m);
return(0);

I*** END free matrix 0****/

/****************

* FUNCTION: ExitOnError()

* This function performs an abnormal process termination.

* Arguments: error txt[]

* Return value: none

* Functions called: none

* Definitions called: ANSI UNIX

* Global variables called: none

* Significant memory allocation: none

85

Sit defined (ANSI)
void ExitOnError(char error txt)
OeLif defined (UNIX)
Exi tOnError(error -txt)
char error txt[];
#endif

fprintf(stderr,"Program run-time error..\n)
fprintf(stderr, %s\n",errortxt);
fprintf(stderr,".. .now exiting to system... .\n");
exit (0);

/***END ExitOnError ***

86

REFERENCES

1. Munk, W. and Wunsch, C., "Ocean Acoustic Tomography: A
Scheme for Large Scale Monitoring," Deep-Sea Research,
v.26A, pp. 123-161, April 1979.

2. Eldred, R.M., Doppler Processing of Phase Encoded
Underwater Acoustic Signals, MS Thesis, Naval Postgraduate
School, Monterey, CA, September 1990.

3. Kinsler, L.E., and others, Fundamentals of Acoustics, 3rd
ed., pp. 98-105, John Wiley & Sons, 1982.

4. Coppens, A.B., Normal Mode Theory for Ocean Waveguides,
pp. 2-4, unpublished manuscript for Naval Postgraduate
School course entitled Propagation in the Ocean (PH4453),
Monterey, CA, 1990.

5. Chiu, C.S., and Ehret, L.L., Department of Oceanography,
Natal Post Graduate School, Monterey, CA, personal
communication, August 1991.

6. Dudgeon, D.E. and Mersereau, R.M., Multidimensional
Digital Signal Processing, pp. 304 -305, Prentice-Hall,
1984.

7. Polcari, J.J., Acoustic Mode Coherence in the Arctic
Ocean, Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, May 1986.

8. Frcgner, G.R., Monitoring of Global Acoustic
Transmissions: Signal Processing and Preliminary Data
Analysis, MS Thesis, Naval Postgraduate School, Monterey,
CA, September 1991.

9. Ort, C.M., Spatial and Temporal Variability of Cross-Basin
Acoustic Ray Paths, MS Thesis, Naval Postgraduate School,
Monterey, CA, December 1990.

10. Ziomek, L.J., Underwater Acoustics: A Linear Systems
Theory Approach, pp. 120-121, Academic Press, Inc., 1985.

11. Press, W.H. and others., Numerical Recipes in C, pp. 85-
407, Cambridge University Press, 1988.

87

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6154

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Prof. J.H. Miller, Code EC/Mr 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

4. Prof. C.S. Chiu, Code OC/Ci 1
Department of Oceanography
,4aval Postgraduate School
Monterey, CA 93943

5. Dr. K. Metzger, Jr.
Communications and Signal Processing Laboratory 1
Department of Electrical Engineering and Computer Science
North Campus
University of Michigan
Ann Arbor, MI 48109-2122

6. Prof. T. Birdsall
Communications and Signal Processing Laboratory 1
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122

7. Dr. R.C. Spindel 1
Director, Applied Physics Laboratory
University of Washington
1013 Northeast 40th Street
Seattle, WA 98105

8. Mr. K. Von der Heydt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

88

9. Prof. A.B. Baggeroer
Department of Ocean Engineering
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

10. Dr. P. Mikhalevsky
SAIC
1710 Goodrich Drive
McLean, VA 22102

11. Dr. W.H. Munk
Institute of Geophysics and Planetary Physics
A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

12. Dr. K. Lashkari
Monterey Bay Aquarium Research Institute
160 Central Avenue
Pacific Grove, CA 93950

13. LT S.E. Crocker, USN
22 Palmer Street
Weymouth, MA 02190

89
4

